The skin microbiome of Xenopus laevis and the effects of husbandry conditions

[1]  M. Clapper,et al.  Gut Microbiota Influences Experimental Outcomes in Mouse Models of Colorectal Cancer , 2019, Genes.

[2]  A. Katsnelson Minding the microbiome of your mice , 2019, Lab Animal.

[3]  G. Alvarado,et al.  Moving Beyond the Host: Unraveling the Skin Microbiome of Endangered Costa Rican Amphibians , 2019, Front. Microbiol..

[4]  Anders F. Andersson,et al.  Effects of allochthonous DOM input on microbial composition and nitrogen cycling genes at two contrasting estuarine sites. , 2019, FEMS microbiology ecology.

[5]  R. Harris,et al.  Skin bacterial communities of neotropical treefrogs vary with local environmental conditions at the time of sampling , 2019, PeerJ.

[6]  Nadine A Schilling,et al.  Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors , 2019, Nature Communications.

[7]  J. Neufeld,et al.  The skin microbiome of vertebrates , 2019, Microbiome.

[8]  A. Boronin,et al.  Characterization of Ultrasmall Chryseobacterium Strains FM1 and FM2 Isolated from Xenopus laevis Skin , 2019, Microbiology.

[9]  D. Philpott,et al.  Comparison of Co-housing and Littermate Methods for Microbiota Standardization in Mouse Models. , 2019, Cell reports.

[10]  M. Horb,et al.  Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support , 2019, Front. Physiol..

[11]  B. Stres,et al.  Composition of the cutaneous bacterial community of a cave amphibian, Proteus anguinus , 2019, FEMS microbiology ecology.

[12]  C. Haddad,et al.  Symbiotic skin bacteria as a source for sex-specific scents in frogs , 2019, Proceedings of the National Academy of Sciences.

[13]  V. Vredenburg,et al.  Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host , 2019, Molecular ecology.

[14]  M. W. McCoy,et al.  Comparative Analysis of Anuran Amphibian Skin Microbiomes Across Inland and Coastal Wetlands , 2018, Microbial Ecology.

[15]  T. Sutton,et al.  Choice of assembly software has a critical impact on virome characterisation , 2018, Microbiome.

[16]  K. Christian,et al.  Skin bacterial diversity is higher on lizards than sympatric frogs in tropical Australia , 2018, PeerJ.

[17]  R. Young,et al.  Comparing the bacterial communities of wild and captive golden mantella frogs: Implications for amphibian conservation , 2018, PloS one.

[18]  V. McKenzie,et al.  Assessment of Bacterial Communities Associated With the Skin of Costa Rican Amphibians at La Selva Biological Station , 2018, Front. Microbiol..

[19]  M. Vences,et al.  Disruption of skin microbiota contributes to salamander disease , 2018, Proceedings of the Royal Society B: Biological Sciences.

[20]  R. Alford,et al.  Increased Numbers of Culturable Inhibitory Bacterial Taxa May Mitigate the Effects of Batrachochytrium dendrobatidis in Australian Wet Tropics Frogs , 2018, Front. Microbiol..

[21]  T. Neilands,et al.  A novel household water insecurity scale: Procedures and psychometric analysis among postpartum women in western Kenya , 2018, bioRxiv.

[22]  E. Borenstein,et al.  The Skin Microbiome of the Neotropical Frog Craugastor fitzingeri: Inferring Potential Bacterial-Host-Pathogen Interactions From Metagenomic Data , 2018, Front. Microbiol..

[23]  V. Vredenburg,et al.  Skin Microbiomes of California Terrestrial Salamanders Are Influenced by Habitat More Than Host Phylogeny , 2018, Front. Microbiol..

[24]  S. O'Hanlon,et al.  Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure , 2018, Nature Communications.

[25]  A. Ryo,et al.  Genetic Analysis of Human Norovirus Strains in Japan in 2016–2017 , 2018, Front. Microbiol..

[26]  Sophie J. Weiss,et al.  Composition of Micro-eukaryotes on the Skin of the Cascades Frog (Rana cascadae) and Patterns of Correlation between Skin Microbes and Batrachochytrium dendrobatidis , 2017, Front. Microbiol..

[27]  O. Kuipers,et al.  Comparative Transcriptomics of Bacillus mycoides Strains in Response to Potato-Root Exudates Reveals Different Genetic Adaptation of Endophytic and Soil Isolates , 2017, Front. Microbiol..

[28]  J. Hoverman,et al.  Cutaneous Microbial Community Variation across Populations of Eastern Hellbenders (Cryptobranchus alleganiensis alleganiensis) , 2017, Front. Microbiol..

[29]  K. Kohl,et al.  Early-life disruption of amphibian microbiota decreases later-life resistance to parasites , 2017, Nature Communications.

[30]  X. Harrison,et al.  Host Microbiome Richness Predicts Resistance to Disturbance by Pathogenic 1 Infection in a Vertebrate Host 2 , 2017 .

[31]  F. Conlon,et al.  Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. , 2017, Developmental biology.

[32]  R. Geffers,et al.  Amphibian skin microbiota exhibits temporal variation in community structure but stability of predicted Bd-inhibitory function , 2017, The ISME Journal.

[33]  S. Sommer,et al.  The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation , 2017, Biodiversity and Conservation.

[34]  C. Chuong,et al.  Diverse feather shape evolution enabled by coupling anisotropic signalling modules with self-organizing branching programme , 2017, Nature Communications.

[35]  V. McKenzie,et al.  Greater Species Richness of Bacterial Skin Symbionts Better Suppresses the Amphibian Fungal Pathogen Batrachochytrium Dendrobatidis , 2017, Microbial Ecology.

[36]  K. Zamudio,et al.  Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen , 2016, The ISME Journal.

[37]  R. Knight,et al.  Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity , 2016, Proceedings of the Royal Society B: Biological Sciences.

[38]  R. Harris,et al.  Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis , 2016, The ISME Journal.

[39]  Anna E. Savage,et al.  Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus , 2015, Proceedings of the Royal Society B: Biological Sciences.

[40]  M. Tinsley,et al.  Chytrid fungus infections in laboratory and introduced Xenopus laevis populations: assessing the risks for U.K. native amphibians , 2015, Biological conservation.

[41]  Nicolas Pollet,et al.  Microbiota and Mucosal Immunity in Amphibians , 2015, Front. Immunol..

[42]  Matias Ostrowski,et al.  Glucose Metabolism Regulates T Cell Activation, Differentiation, and Functions , 2014, Front. Immunol..

[43]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[44]  G. Comi,et al.  Long Term Natural History Data in Ambulant Boys with Duchenne Muscular Dystrophy: 36-Month Changes , 2014, PloS one.

[45]  I. A. Gomez de Segura,et al.  Anaesthetic effects in the ferret of alfaxalone alone and in combination with medetomidine or tramadol: a pilot study , 2014, Laboratory animals.

[46]  R. Jensen,et al.  Amphibian skin may select for rare environmental microbes , 2014, The ISME Journal.

[47]  R. Knight,et al.  The amphibian skin‐associated microbiome across species, space and life history stages , 2014, Molecular ecology.

[48]  Yan Mei,et al.  The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA , 2014, Genome Biology.

[49]  R. Preziosi,et al.  Ex situ Diet Influences the Bacterial Community Associated with the Skin of Red-Eyed Tree Frogs (Agalychnis callidryas) , 2014, PloS one.

[50]  R. Knight,et al.  Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus) , 2013, The ISME Journal.

[51]  Katherine A Smith,et al.  Chryseobacterium angstadtii sp. nov., isolated from a newt tank. , 2013, International journal of systematic and evolutionary microbiology.

[52]  R. Harris,et al.  Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. , 2013, Ecology letters.

[53]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[54]  A. Knoll,et al.  Animals in a bacterial world, a new imperative for the life sciences , 2013, Proceedings of the National Academy of Sciences.

[55]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[56]  Nicholas A. Bokulich,et al.  Routine Habitat Change: A Source of Unrecognized Transient Alteration of Intestinal Microbiota in Laboratory Mice , 2012, PloS one.

[57]  A. Klindworth,et al.  Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies , 2012, Nucleic acids research.

[58]  M. Horb,et al.  Development of xenopus resource centers: The national xenopus resource and the european xenopus resource center , 2012, Genesis.

[59]  R. Harland,et al.  Xenopus research: metamorphosed by genetics and genomics. , 2011, Trends in genetics : TIG.

[60]  R. Knight,et al.  Co-habiting amphibian species harbor unique skin bacterial communities in wild populations , 2011, The ISME Journal.

[61]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[62]  R. Tinsley Amphibians, with Special Reference to Xenopus , 2010 .

[63]  Jorge Fernández,et al.  Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. , 2009, International journal of systematic and evolutionary microbiology.

[64]  Shifeng Wang,et al.  First isolation and identification of Elizabethkingia meningoseptica from cultured tiger frog, Rana tigerina rugulosa. , 2009, Veterinary microbiology.

[65]  Erik Segerdell,et al.  An ontology for Xenopus anatomy and development , 2008, BMC Developmental Biology.

[66]  Wolf-Dietrich Hardt,et al.  The role of microbiota in infectious disease. , 2008, Trends in microbiology.

[67]  R. Harris,et al.  Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa , 2007 .

[68]  M. Khokha,et al.  Characterization of a Mycobacterium ulcerans-like infection in a colony of African tropical clawed frogs (Xenopus tropicalis). , 2004, Comparative medicine.

[69]  R. Tinsley,et al.  Biology of Xenopus , 1998 .

[70]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[71]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[72]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation , 1995 .

[73]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[74]  A. Magurran Ecological Diversity and Its Measurement , 1988, Springer Netherlands.

[75]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .

[76]  E. Elkan The Xenopus Pregnancy Test , 1938, British medical journal.

[77]  M. Horb,et al.  Generation and Care of Xenopus laevis and Xenopus tropicalis Embryos. , 2018, Methods in molecular biology.

[78]  James Kirkwood,et al.  The Ufaw Handbook on The Care and Management of Laboratory and Other Research Animals , 2015 .

[79]  S. Green The Laboratory Xenopus sp. , 2009 .

[80]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[81]  J. Gurdon,et al.  The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. , 2000, The International journal of developmental biology.

[82]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[83]  L. Trueb,et al.  Biology of Amphibians , 1986 .