Scattering of light and atoms in a Fermi-Dirac gas with BCS pairing

We theoretically study the optical properties of a Fermi-Dirac gas in the presence of a superfluid state. We calculate the leading quantum-statistical corrections to the standard column density result of the electric susceptibility. We also consider the Bragg diffraction of atoms by means of light-stimulated transitions of photons between two intersecting laser beams. Bardeen-Cooper-Schrieffer pairing between atoms in different internal levels magnifies incoherent scattering processes. The absorption linewidth of a Fermi-Dirac gas is broadened and shifted. Bardeen-Cooper-Schrieffer pairing introduces a collisional local-field shift that may dramatically dominate the Lorentz-Lorenz shift. For the case of the Bragg spectroscopy the static structure function may be significantly increased due to superfluidity in the nearforward scattering.