A Sobolev rough path extension theorem via regularity structures
暂无分享,去创建一个
[1] P. Bahr,et al. Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.
[2] S. Hensel,et al. Modelled distributions of Triebel–Lizorkin type , 2017, Studia Mathematica.
[3] L. Zambotti,et al. The geometry of the space of branched rough paths , 2018, Proceedings of the London Mathematical Society.
[4] Jacques Simon,et al. Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval , 1990 .
[5] David J. Promel,et al. On Sobolev rough paths , 2020, 2006.03322.
[6] Y. Meyer. Wavelets and Operators , 1993 .
[7] Terry Lyons,et al. An extension theorem to rough paths , 2007 .
[8] A variation embedding theorem and applications , 2005, math/0511520.
[9] Martin Hairer,et al. A Course on Rough Paths , 2020, Universitext.
[10] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[11] David J. Prömel,et al. Optimal Extension to Sobolev Rough Paths , 2018, Potential Analysis.
[12] J. Unterberger,et al. Hölder-Continuous Rough Paths by Fourier Normal Ordering , 2009, 0903.2716.
[13] H. Weber,et al. Stochastic PDEs, Regularity Structures, and Interacting Particle Systems , 2015, 1508.03616.
[14] École d'été de probabilités de Saint-Flour,et al. Differential equations driven by rough paths , 2007 .
[15] Martin Hairer. Introduction to regularity structures , 2014, Universitext.
[16] Martin Hairer,et al. The reconstruction theorem in Besov spaces , 2016, 1609.04543.
[17] DaubechiesIngrid. Orthonormal bases of compactly supported wavelets II , 1993 .
[18] Terry Lyons. Di erential equations driven by rough signals , 1998 .