The uncertain representation ranking framework for concept-based video retrieval

Concept based video retrieval often relies on imperfect and uncertain concept detectors. We propose a general ranking framework to define effective and robust ranking functions, through explicitly addressing detector uncertainty. It can cope with multiple concept-based representations per video segment and it allows the re-use of effective text retrieval functions which are defined on similar representations. The final ranking status value is a weighted combination of two components: the expected score of the possible scores, which represents the risk-neutral choice, and the scores’ standard deviation, which represents the risk or opportunity that the score for the actual representation is higher. The framework consistently improves the search performance in the shot retrieval task and the segment retrieval task over several baselines in five TRECVid collections and two collections which use simulated detectors of varying performance.

[1]  Gabriella Kazai,et al.  Tolerance to irrelevance: a user-effort oriented evaluation of retrieval systems without predefined retrieval unit , 2004 .

[2]  Rong Yan,et al.  Probabilistic models for combining diverse knowledge sources in multimedia retrieval , 2006 .

[3]  Shih-Fu Chang,et al.  Query-Adaptive Fusion for Multimodal Search , 2008, Proceedings of the IEEE.

[4]  Djoerd Hiemstra,et al.  Using language models for information retrieval , 2001 .

[5]  Alan F. Smeaton,et al.  Measuring the Influence of Concept Detection on Video Retrieval , 2009, CAIP.

[6]  Katja Hofmann,et al.  Assessing concept selection for video retrieval , 2008, MIR '08.

[7]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[8]  Jun Wang,et al.  Mean-Variance Analysis: A New Document Ranking Theory in Information Retrieval , 2009, ECIR.

[9]  Djoerd Hiemstra,et al.  Reusing annotation labor for concept selection , 2009, CIVR '09.

[10]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[11]  Jun Yang,et al.  (Un)Reliability of video concept detection , 2008, CIVR '08.

[12]  Djoerd Hiemstra,et al.  A probabilistic ranking framework using unobservable binary events for video search , 2008, CIVR '08.

[13]  Jennifer Widom,et al.  ULDBs: databases with uncertainty and lineage , 2006, VLDB.

[14]  Djoerd Hiemstra,et al.  Simulating the future of concept-based video retrieval under improved detector performance , 2011, Multimedia Tools and Applications.

[15]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[16]  Hwee Tou Ng,et al.  A lattice-based approach to query-by-example spoken document retrieval , 2008, SIGIR '08.

[17]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[18]  Shih-Fu Chang,et al.  Video search reranking via information bottleneck principle , 2006, MM '06.

[19]  Chong-Wah Ngo,et al.  Representations of Keypoint-Based Semantic Concept Detection: A Comprehensive Study , 2010, IEEE Transactions on Multimedia.

[20]  Bo Zhang,et al.  Using High-Level Semantic Features in Video Retrieval , 2006, CIVR.

[21]  Stephen E. Robertson,et al.  Probabilistic models of indexing and searching , 1980, SIGIR '80.

[22]  Yun Peng,et al.  A probabilistic extension to ontology language OWL , 2004, 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the.

[23]  William S. Cooper,et al.  Some inconsistencies and misidentified modeling assumptions in probabilistic information retrieval , 1995, TOIS.

[24]  Norbert Fuhr,et al.  Models for retrieval with probabilistic indexing , 1989, Inf. Process. Manag..

[25]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[26]  Marcel Worring,et al.  Concept-Based Video Retrieval , 2009, Found. Trends Inf. Retr..

[27]  W. Bruce Croft Document representation in probabilistic models of information retrieval , 1981, J. Am. Soc. Inf. Sci..

[28]  Robin Benjamin Niko Aly,et al.  Modeling representation uncertainty in concept-based multimedia retrieval , 2011, SIGF.

[29]  Jun Yang,et al.  Exploring temporal consistency for video analysis and retrieval , 2006, MIR '06.

[30]  Djoerd Hiemstra,et al.  PFTijah: text search in an XML database system , 2006 .

[31]  Marcel Worring,et al.  Adding Semantics to Detectors for Video Retrieval , 2007, IEEE Transactions on Multimedia.

[32]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[33]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[34]  Alan F. Smeaton,et al.  A Comparison of Score, Rank and Probability-Based Fusion Methods for Video Shot Retrieval , 2005, CIVR.

[35]  Alexander J. Smola,et al.  Advances in Large Margin Classifiers , 2000 .

[36]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[37]  Djoerd Hiemstra,et al.  Beyond Shot Retrieval: Searching for Broadcast News Items Using Language Models of Concepts , 2010, ECIR.

[38]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[39]  Jun Wang,et al.  Portfolio theory of information retrieval , 2009, SIGIR.

[40]  CHENGXIANG ZHAI,et al.  A study of smoothing methods for language models applied to information retrieval , 2004, TOIS.

[41]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[42]  Rong Yan,et al.  Can High-Level Concepts Fill the Semantic Gap in Video Retrieval? A Case Study With Broadcast News , 2007, IEEE Transactions on Multimedia.

[43]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[44]  Donna K. Harman,et al.  Overview of the Ninth Text REtrieval Conference (TREC-9) , 2000, TREC.

[45]  Dong Wang,et al.  Video search in concept subspace: a text-like paradigm , 2007, CIVR '07.

[46]  Mohan S. Kankanhalli,et al.  Proceedings of the 2008 international conference on Content-based image and video retrieval , 2008 .