Hydrology-driven macrophyte dynamics determines the ecological functioning of a model Mediterranean temporary lake
暂无分享,去创建一个
[1] Antonio Camacho,et al. Empirical Relationships for Monitoring Water Quality of Lakes and Reservoirs Through Multispectral Images , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[2] D. Boix,et al. The ecological role of ponds in a changing world , 2014, Hydrobiologia.
[3] He-Long Jiang,et al. Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake , 2013, Hydrobiologia.
[4] Janaine Z. Coletti,et al. Hydrological controls on carbon metabolism in wetlands , 2013 .
[5] A. Camacho,et al. Functional ecological patterns and the effect of anthropogenic disturbances on a recently restored Mediterranean coastal lagoon. Needs for a sustainable restoration , 2012 .
[6] N. Marbà,et al. Ecosystem metabolism in a temporary Mediterranean marsh (Doñana National Park, SW Spain) , 2010 .
[7] M. Fernández-Aláez,et al. Effects of the intense summer desiccation and the autumn filling on the water chemistry in some Mediterranean ponds , 2010, Limnetica.
[8] W. Landman. Climate change 2007: the physical science basis , 2010 .
[9] M. Coveney,et al. How anthropogenic darkening of Lake Apopka induced benthic light limitation and forced the shift from macrophyte to phytoplankton dominance , 2010 .
[10] N. Nikolaidis,et al. Modelling hydrological characteristics of Mediterranean Temporary Ponds and potential impacts from climate change , 2009, Hydrobiologia.
[11] J. Biggs,et al. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat , 2008, Hydrobiologia.
[12] M. Bazzanti,et al. Macrophyte diversity and physico-chemical characteristics of Tyrrhenian coast ponds in central Italy: implications for conservation , 2008, Hydrobiologia.
[13] Antonio Camacho,et al. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes , 2006, Limnetica.
[14] C. Stedmon,et al. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis , 2005 .
[15] Carlos Montes,et al. Ecosystem metabolism in a Mediterranean shallow lake (Laguna de Santa Olalla, Doñana National Park, SW Spain) , 2004, Wetlands.
[16] H. Golterman,et al. The Chemistry of Phosphate and Nitrogen Compounds in Sediments , 2004, Springer Netherlands.
[17] Sara M. Morata. Asociaciones fitoplanctónicas y su periodicidad en un lago marcadamente estratificado , 2003, Limnetica.
[18] J. Kalff,et al. Interactions among epilimnetic phosphorus, phytoplankton biomass and bacterioplankton metabolism in lakes of varying submerged macrophyte cover , 2003, Hydrobiologia.
[19] Colin S. Reynolds,et al. Towards a functional classification of the freshwater phytoplankton , 2002 .
[20] L. Kufel,et al. Chara beds acting as nutrient sinks in shallow lakes—a review , 2002 .
[21] P. Grillas,et al. Deposition, germination and spatio-temporal patterns of charophyte propagule banks: a review , 2002 .
[22] M. Álvarez-Cobelas,et al. Nutrient Dynamics and Eutrophication Patterns in a Semi-Arid Wetland: The Effects of Fluctuating Hydrology , 2001 .
[23] N. Willby,et al. Regenerative strategies of aquatic plants in disturbed habitats: the role of the propagule bank , 2001, Archiv für Hydrobiologie.
[24] W. Wurtsbaugh,et al. Grazing by a dominant rotifer Conochilus unicornis Rousselet in a mountain lake: in situ measurements with synthetic microspheres , 2001, Hydrobiologia.
[25] Takashi Asaeda,et al. Modeling the effects of macrophyte growth and decomposition on the nutrient budget in Shallow Lakes , 2000 .
[26] R. Hecky,et al. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? , 2000 .
[27] S. Weisner,et al. Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes , 1997, Oecologia.
[28] R. Lewin. Handbook of Methods in Aquatic Microbial Ecology , 1994 .
[29] R. Wetzel,et al. Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water quality , 1994, Hydrobiologia.
[30] Wilhelm Granéli,et al. Influence of aquatic macrophytes on phosphorus cycling in lakes , 1988, Hydrobiologia.
[31] Hugh G. Gauch,et al. Multivariate analysis in community ecology , 1984 .
[32] R. Carignan,et al. Phosphorus release by submerged macrophytes: Significance to epiphyton and phytoplankton1,1 , 1982 .
[33] F. W. Gilcreas,et al. Standard methods for the examination of water and waste water. , 1966, American journal of public health and the nation's health.
[34] R. Urrutia,et al. Benthic macroinvertebrate community patterns of Mediterranean f orested wetlands and their relation to changes in the hydroperiod , 2014 .
[35] C. J. Benetti,et al. The determination of food sources for invertebrates in four ponds in NW Spain using stable isotope analysis , 2014 .
[36] Maria Rosa Miracle,et al. Spectrophotometric methods for the determination of photosynthetic pigments in stratified lakes: a critical analysis based on comparisons with HPLC determinations in a model lake , 2013, Limnetica.
[37] N. Arnau,et al. Valoración de lagos y lagunas de la cuenca del Duero a partir de los macrófitos acuáticos , 2013 .
[38] C. Montes,et al. Temporal variation of phytoplankton in two neighbouring Mediterranean shallow lakes in Doñana National Park (Spain) , 2012 .
[39] W. Kemp,et al. The metabolism of aquatic ecosystems: history, applications, and future challenges , 2011, Aquatic Sciences.
[40] M. Aláez,et al. Effects of the intense summer desiccation and the autumn filling on the water chemistry in some Mediterranean ponds , 2010 .
[41] Santos María Cirujano Bracamonte,et al. Flora ibérica. Algas continentales. Carófitos (Characeae) , 2008 .
[42] E. Jeppesen,et al. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth , 2004, Hydrobiologia.
[43] N. Willby,et al. Regenerative strategies of aquatic macrophytes in flood disturbed habitats : the role of the propagule bank. , 2001 .
[44] Martin Søndergaard,et al. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes , 1998 .
[45] J. Barko,et al. Effects of Submerged Aquatic Macrophytes on Nutrient Dynamics, Sedimentation, and Resuspension , 1998 .
[46] A. Tormo. Guía de macrófitos dulceacuícolas de la Comunidad Valenciana , 1998 .
[47] Erik Jeppesen,et al. The Structuring Role of Submerged Macrophytes in Lakes , 1998, Ecological Studies.
[48] Stephen R. Carpenter,et al. Sediment interactions with submersed macrophyte growth and community dynamics , 1991 .
[49] A. E. Greenberg,et al. Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .
[50] Heinz Streble,et al. Atlas de los microorganismos de agua dulce: la vida en una gota de agua , 1987 .
[51] B. Truelove,et al. The Structure and Function of Roots , 1986 .
[52] J. Fiasson. Introduction à l'étude des Macroinvertébrés des eaux douces (Systématique élémentaire et aperçu écologique). H. Tachet, M. Bournaud et Ph. Richoux, avec la collaboration de L. Caillère, M. Coulet, J. Fontaine, J. Juget et E. Pattée , 1981 .
[53] H. Utermöhl. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .