Some matrix inequalities of log-majorization type

The purpose of this paper is two-fold: we present some matrix inequalities of log-majorization type for eigenvalues indexed by a sequence; we then apply our main theorem to generalize and improve the Hua-Marcus' inequalities. Our results are stronger and more general than the existing ones.

[1]  Fuzhen Zhang,et al.  Contractive matrices of Hua type , 2011 .

[2]  K. Fan On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations: II. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[3]  H. Weyl Inequalities between the Two Kinds of Eigenvalues of a Linear Transformation. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Fuzhen Zhang,et al.  Inequalities for selected eigenvalues of the product of matrices , 2019, Proceedings of the American Mathematical Society.

[5]  T. Andô POSITIVITY OF OPERATOR-MATRICES OF HUA-TYPE , 2008 .

[6]  James M. Taylor Eigenvalues for Sums of Hermitian Matrices , 2015 .

[7]  A. R. Amir-Moéz Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations , 1956 .

[8]  A. Oppenheim,et al.  Inequalities Connected with Definite Hermitian Forms, II , 1954 .

[9]  Fuzhen Zhang,et al.  Revisiting hua-marcus-bellman-ando inequalities on contractive matrices , 2009 .

[10]  Fuzhen Zhang,et al.  Some inequalities for the eigenvalues of the product of positive semidefinite Hermitian matrices , 1992 .

[11]  H. Wielandt An extremum property of sums of eigenvalues , 1955 .

[12]  Ingram Olkin,et al.  Inequalities: Theory of Majorization and Its Application , 1979 .

[13]  Christopher C. Paige,et al.  HUA'S MATRIX EQUALITY AND SCHUR COMPLEMENTS , 2008 .

[14]  R. C. Thompson,et al.  On the Eigenvalues of Sums of Hermitian Matrices , 1971 .

[15]  Fumio Hiai,et al.  Log majorization and complementary Golden-Thompson type inequalities , 1994 .

[16]  A determinantal inequality , 2002 .

[17]  F. Hiai,et al.  Log-majorization and Lie-Trotter formula for the Cartan barycenter on probability measure spaces , 2016, 1609.08909.

[18]  M. Fiedler Bounds for the determinant of the sum of hermitian matrices , 1971 .

[19]  Fuzhen Zhang Matrix Theory: Basic Results and Techniques , 1999 .

[20]  K. Fan On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[21]  H. Loo INEQUALITIES INVOLVING DETERMINANTS , 1955 .

[22]  G. Forsythe,et al.  The proper values of the sum and product of symmetric matrices , 1953 .