Self-Assembly in Polyoxometalate and Metal Coordination-Based Systems: Synthetic Approaches and Developments

Utilizing new experimental approaches and gradual understanding of the underlying chemical processes has led to advances in the self-assembly of inorganic and metal–organic compounds at a very fast pace over the last decades. Exploitation of unveiled information originating from initial experimental observations has sparked the development of new families of compounds with unique structural characteristics and functionalities. The main source of inspiration for numerous research groups originated from the implementation of the design element along with the discovery of new chemical components which can self-assemble into complex structures with wide range of sizes, topologies and functionalities. Not only do self-assembled inorganic and metal–organic chemical systems belong to families of compounds with configurable structures, but also have a vast array of physical properties which reflect the chemical information stored in the various “modular” molecular subunits. The purpose of this short review article is not the exhaustive discussion of the broad field of inorganic and metal–organic chemical systems, but the discussion of some representative examples from each category which demonstrate the implementation of new synthetic approaches and design principles.

[1]  M. Mirzaei,et al.  Synthesis, X-ray Crystal Structure and Spectroscopic Characterization of a Hybrid Material Based on Glycine and α-Keggin Type Polyoxotungstate , 2012 .

[2]  J. Dutasta,et al.  Emergence of Hemicryptophanes: From Synthesis to Applications for Recognition, Molecular Machines, and Supramolecular Catalysis. , 2017, Chemical reviews.

[3]  Guangming Li,et al.  Immobilization of Polyoxometalate in the Metal-Organic Framework rht-MOF-1: Towards a Highly Effective Heterogeneous Catalyst and Dye Scavenger , 2016, Scientific Reports.

[4]  Yu‐Fei Song,et al.  A multicomponent assembly approach for the design of deep desulfurization heterogeneous catalysts. , 2016, Dalton transactions.

[5]  Timothy R. Cook,et al.  Metal—Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal—Organic Materials , 2013 .

[6]  H. Murakami,et al.  Tetrameric, Tri-Titanium(IV)-Substituted Polyoxometalates with an α-Dawson Substructure as Soluble Metal Oxide Analogues. Synthesis and Molecular Structure of Three Giant “Tetrapods” Encapsulating Different Anions (Br−, I−, and NO3−) , 2007 .

[7]  Xuan Zhang,et al.  Multiiron Polyoxoanions. Syntheses, Characterization, X-ray Crystal Structures, and Catalysis of H2O2-Based Hydrocarbon Oxidations by [FeIII4(H2O)2(P2W15O56)2]12- , 1997 .

[8]  M. T. Pope,et al.  Mechanism of polyoxometalate-mediated inactivation of DNA polymerases: an analysis with HIV-1 reverse transcriptase indicates specificity for the DNA-binding cleft. , 1996, The Biochemical journal.

[9]  L. Cronin,et al.  Controllable growth of chains and grids from polyoxomolybdate building blocks linked by silver(I) dimers. , 2005, Chemistry.

[10]  L. Cronin,et al.  Solution identification and solid state characterisation of a heterometallic polyoxometalate {Mo(11)V(7)}: [Mo(VI)(11)V(V)(5)V(IV)(2)O(52)(mu(9)-SO(3))](7-). , 2008, Chemical communications.

[11]  Yu‐Fei Song,et al.  Polyoxometalate (POM)-Layered Double Hydroxides (LDH) Composite Materials: Design and Catalytic Applications , 2017 .

[12]  L. Cronin,et al.  Controlled assembly and solution observation of a 2.6 nm polyoxometalate 'super' tetrahedron cluster: [KFe12(OH)18(alpha-1,2,3-P2W15O56)4]29-. , 2007, Chemical communications.

[13]  Tianbo Liu,et al.  Rational Design of Organically Functionalized Polyoxopalladates and Their Supramolecular Properties. , 2018, Chemistry.

[14]  J. Marrot,et al.  Polyoxometalate, Cationic Cluster, and γ-Cyclodextrin: From Primary Interactions to Supramolecular Hybrid Materials. , 2017, Journal of the American Chemical Society.

[15]  Lei Qin,et al.  Topological Self-Assembly of Highly Symmetric Lanthanide Clusters: A Magnetic Study of Exchange-Coupling "Fingerprints" in Giant Gadolinium(III) Cages. , 2017, Journal of the American Chemical Society.

[16]  M. Nyman Polyoxoniobate chemistry in the 21st century. , 2011, Dalton transactions.

[17]  R. Winpenny,et al.  Measuring Spin⋅⋅⋅Spin Interactions between Heterospins in a Hybrid [2]Rotaxane , 2017, Angewandte Chemie.

[18]  M. Fujita,et al.  Self-Assembled M24L48 Polyhedra and Their Sharp Structural Switch upon Subtle Ligand Variation , 2010, Science.

[19]  Yu-Fei Song,et al.  Modular Polyoxometalate-Layered Double Hydroxide Composites as Efficient Oxidative Catalysts. , 2015, Chemistry.

[20]  N. Dalal,et al.  Polyoxopalladates encapsulating yttrium and lanthanide ions, [X(III)Pd(II)12(AsPh)8O32]5- (X=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). , 2010, Chemistry.

[21]  W. Ramsay,et al.  Stereochemistry in Subcomponent Self‐Assembly , 2014 .

[22]  Hwan-Kyu Kim,et al.  Self-assembled molecular squares containing metal-based donor: synthesis and application in the sensing of nitro-aromatics. , 2011, Dalton transactions.

[23]  Z. Su,et al.  Metal-organic frameworks as potential drug delivery systems , 2013, Expert opinion on drug delivery.

[24]  Yu‐Fei Song,et al.  Facile Immobilization of a Lewis Acid Polyoxometalate onto Layered Double Hydroxides for Highly Efficient N‐Oxidation of Pyridine‐Based Derivatives and Denitrogenation , 2015 .

[25]  X. Wang,et al.  A series of Anderson-type polyoxometalate-based metal-organic complexes: their pH-dependent electrochemical behaviour, and as electrocatalysts and photocatalysts. , 2016, Dalton transactions.

[26]  P. Stang,et al.  Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles , 2012 .

[27]  L. Cronin,et al.  Unveiling the Transient Template in the Self-Assembly of a Molecular Oxide Nanowheel , 2010, Science.

[28]  Leroy Cronin,et al.  Solution-phase monitoring of the structural evolution of a Molybdenum Blue nanoring. , 2012, Journal of the American Chemical Society.

[29]  Z. Su,et al.  Self-assembly of polyoxometalate-based metal organic frameworks based on octamolybdates and copper-organic units: from Cu(II), Cu(I,II) to Cu(I) via changing organic amine. , 2008, Inorganic chemistry.

[30]  U. Kortz,et al.  The selenite-capped polyoxo-4-aurate(III), [Au(III)4O4(Se(IV)O3)4]4-. , 2012, Chemical communications.

[31]  Canzhong Lu,et al.  A novel naphthalenediimide-based lanthanide-organic framework with polyoxometalate templates exhibiting reversible photochromism. , 2017, Dalton transactions.

[32]  K. Raymond,et al.  Supramolecular catalysis in metal-ligand cluster hosts. , 2015, Chemical reviews.

[33]  Qi Zhang,et al.  Advantages of Catalysis in Self-Assembled Molecular Capsules. , 2016, Chemistry.

[34]  N. Mizuno,et al.  Cucurbit[n]uril-polyoxoanion hybrids. , 2009, Journal of the American Chemical Society.

[35]  Achim Müller,et al.  [Mo154(NO)14O420(OH)28(H2O)70](25 ± 5)−: A Water‐Soluble Big Wheel with More than 700 Atoms and a Relative Molecular Mass of About 24000 , 1995 .

[36]  Jean-Marie Lehn,et al.  Toward complex matter: Supramolecular chemistry and self-organization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  P. Domaille,et al.  Trisubstituted heteropolytungstates as soluble metal oxide analogs. III. Synthesis, characterization, phosphorus-31, silicon-29, vanadium-51, and 1- and 2-D tungsten-183 NMR, deprotonation, and proton mobility studies of organic solvent solute forms of HxSiW9V3O40x-7 and HxP2W15V3O62x-9 , 1986 .

[38]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[39]  Shaobin Wang,et al.  Metal organic frameworks as a drug delivery system for flurbiprofen , 2017, Drug design, development and therapy.

[40]  P. Mukherjee,et al.  Urea-Functionalized Self-Assembled Molecular Prism for Heterogeneous Catalysis in Water. , 2016, Journal of the American Chemical Society.

[41]  P. Stang,et al.  Self-assembly of nanoscopic coordination cages using a flexible tripodal amide containing linker. , 2004, The Journal of organic chemistry.

[42]  Mingguo Ma,et al.  Gadolinium-Based Metal–Organic Framework as an Efficient and Heterogeneous Catalyst To Activate Epoxides for Cycloaddition of CO2 and Alcoholysis , 2017 .

[43]  L. Cronin,et al.  Design and synthesis of polyoxometalate-framework materials from cluster precursors , 2017 .

[44]  Tanya K. Ronson,et al.  Peripheral Templation Generates an MII 6L4 Guest‐Binding Capsule , 2016, Angewandte Chemie.

[45]  J. Zubieta,et al.  Anion influences on the construction of one-dimensional structures of the Cu(II)–bisterpy family (bisterpy=2,2′:4′,4″:2″,2‴-quarterpyridyl, 6′,6″-di-2-pyridiine) , 2003 .

[46]  E. Oldfield,et al.  Tetra- to dodecanuclear oxomolybdate complexes with functionalized bisphosphonate ligands: activity in killing tumor cells. , 2010, Chemistry.

[47]  P. J. Lusby,et al.  Modular [FeIII8MII6] n+ (MII = Pd, Co, Ni, Cu) Coordination Cages. , 2018, Inorganic chemistry.

[48]  Z. Dai,et al.  Polyoxometalate-Based Organic-Inorganic Hybrids as Antitumor Drugs. , 2015, Small.

[49]  R. Finke,et al.  Single-crystal x-ray structures of the polyoxotungstate salts K8.3Na1.7[Cu4(H2O)2(PW9O34)2].cntdot.24H2O and Na14Cu[Cu4(H2O)2(P2W15O56)2].cntdot.53H2O , 1990 .

[50]  Zixi Kang,et al.  Recent advances and challenges of metal–organic framework membranes for gas separation , 2017 .

[51]  D. Lyon,et al.  Structure of nonasodium α-triniobatopentadecawolframatodiphosphate-acetonitrile-water (1/2/23), Na9[P2W15Nb3O62].2CH3CN.23H2O , 1990 .

[52]  A. Dolbecq,et al.  Functionalized polyoxometalates with covalently linked bisphosphonate, N-donor or carboxylate ligands: from electrocatalytic to optical properties. , 2012, Chemical communications.

[53]  L. Cronin,et al.  Exploring self-assembly and the self-organization of nanoscale inorganic polyoxometalate clusters , 2017 .

[54]  Hai-Bo Huang,et al.  Polyoxometalate-cucurbituril molecular solid as photocatalyst for dye degradation under visible light , 2017 .

[55]  R. Schinazi,et al.  Polyoxometalates in Medicine. , 1998, Chemical reviews.

[56]  Watchareeya Kaveevivitchai,et al.  Metal−Organic Frameworks: Rise of the Ligands † , 2014 .

[57]  K. Rissanen,et al.  White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule , 2009, Science.

[58]  J. J. Borrás-Almenar,et al.  Single-Crystal X-ray Structure and Magnetic Properties of the Polyoxotungstate Complexes Na16[M4(H2O)2(P2W15O56)2].cntdot.nH2O (M = MnII, n = 53; M = NiII, n = 52): An Antiferromagnetic MnII Tetramer and a Ferromagnetic NiII Tetramer , 1994 .

[59]  M. Fujita,et al.  Noncovalent trapping and stabilization of dinuclear ruthenium complexes within a coordination cage. , 2011, Journal of the American Chemical Society.

[60]  J. Marrot,et al.  Polyoxometalate-based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[61]  Yu‐Fei Song,et al.  Rational Design of a Polyoxometalate Intercalated Layered Double Hydroxide: Highly Efficient Catalytic Epoxidation of Allylic Alcohols under Mild and Solvent-Free Conditions. , 2017, Chemistry.

[62]  J. Caro,et al.  MOF membrane synthesis in the confined space of a vertically aligned LDH network. , 2014, Chemical communications.

[63]  L. Cronin,et al.  Directed Self-Assembly, Symmetry Breaking, and Electronic Modulation of Metal Oxide Clusters by Pyramidal Heteroanions. , 2018, Chemistry.

[64]  Thomas Heine,et al.  Polyoxometalates made of gold: the polyoxoaurate [Au(III)4As(V)4O20]8-. , 2010, Angewandte Chemie.

[65]  J. Lehn From Supramolecular Chemistry Towards Constitutional Dynamic Chemistry and Adaptive Chemistry , 2007 .

[66]  Chen Zhao,et al.  Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. , 2014, Journal of the American Chemical Society.

[67]  Dae-Won Park,et al.  Zirconium-based isoreticular metal-organic frameworks for CO2 fixation via cyclic carbonate synthesis , 2018, Korean Journal of Chemical Engineering.

[68]  Tomohiko Yamaguchi,et al.  Simulation of metal-ligand self-assembly into spherical complex M6L8. , 2012, Journal of the American Chemical Society.

[69]  M. Mirzaei,et al.  Two Novel Chiral Inorganic–Organic Hybrid Materials Containing Preyssler and Wells–Dawson Heteropolyoxometallates with Valine (val), Glycine (gly), and Proline (pro) Amino acids: (Hval)2(Hgly)(H3O)6K5[Na(H2O)P5W30O110]·19.5H2O and (Hpro)6[P2W18O62]·8H2O , 2012, Journal of Cluster Science.

[70]  Hao Li,et al.  Recent advances in gas storage and separation using metal–organic frameworks , 2018 .

[71]  L. Zakharov,et al.  Observing assembly of complex inorganic materials from polyoxometalate building blocks. , 2013, Journal of the American Chemical Society.

[72]  T. Cook,et al.  Coordination-driven self-assembly of ruthenium-based molecular-rectangles: synthesis, characterization, photo-physical and anticancer potency studies. , 2012, Dalton transactions.

[73]  Bai-bin Zhou,et al.  A novel 1D chain compound constructed from copper-complex fragments-substituted dilacunary β-octamolybdate units and saturated β-octamolybdate clusters , 2008 .

[74]  Z. Su,et al.  Syntheses and structures of organic-inorganic hybrid compounds based on metal-fluconazole coordination polymers and the beta-Mo8O26 anion. , 2007, Inorganic chemistry.

[75]  S. Kitagawa,et al.  Coordinatively immobilized monolayers on porous coordination polymer crystals. , 2010, Angewandte Chemie.

[76]  Leroy Cronin,et al.  Polyoxometalate based open-frameworks (POM-OFs). , 2014, Chemical Society reviews.

[77]  L. Cronin,et al.  Real-time observation of the self-assembly of hybrid polyoxometalates using mass spectrometry. , 2011, Angewandte Chemie.

[78]  Tomohiko Yamaguchi,et al.  Coordination-directed self-assembly of M12L24 nanocage: effects of kinetic trapping on the assembly process. , 2014, ACS nano.

[79]  J. Marrot,et al.  Nonconventional Three-Component Hierarchical Host-Guest Assembly Based on Mo-Blue Ring-Shaped Giant Anion, γ-Cyclodextrin, and Dawson-type Polyoxometalate. , 2017, Journal of the American Chemical Society.

[80]  M. T. Pope,et al.  Noble metals in polyoxometalates. , 2012, Angewandte Chemie.

[81]  Li Zhang,et al.  Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. , 2014, Chemical Society reviews.

[82]  W. Ahn,et al.  CO2 Cycloaddition of Epichlorohydrin over NH2-Functionalized MIL-101 , 2015 .

[83]  P. Kögerler,et al.  PO4(3-)-mediated polyoxometalate supercluster assembly. , 2008, Angewandte Chemie.

[84]  L. Cronin,et al.  Molecular Growth of Polyoxometalate Architectures Based on [−Ag{Mo8}Ag−] Synthons: Toward Designed Cluster Assemblies , 2008 .

[85]  B. Hasenknopf,et al.  Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. , 2005, Frontiers in bioscience : a journal and virtual library.

[86]  Yibie Qin,et al.  Oxidation/adsorption desulfurization of natural gas by bridged cyclodextrins dimer encapsulating polyoxometalate , 2013 .

[87]  M. Droege,et al.  Trivacant heteropolytungstate derivatives. 2. Synthesis, characterization, and tungsten-183 NMR of P4W30M4(H2O)2O11216- (M = Co, Cu, Zn) , 1983 .

[88]  M. Fujita,et al.  Supramolecular Self-Assembly of Macrocycles, Catenanes, and Cages through Coordination of Pyridine-Based Ligands to Transition Metals , 1996 .

[89]  Maria Mifsud,et al.  Self-assembly of a heteropolyoxopalladate nanocube: [Pd(II)13As(V)8O34(OH)6]8-. , 2008, Angewandte Chemie.

[90]  J. F. Stoddart,et al.  Complexation of polyoxometalates with cyclodextrins. , 2015, Journal of the American Chemical Society.

[91]  Y. S. Lin,et al.  Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes , 2013 .

[92]  W. Nelson,et al.  Structure of the polyanions of the transition metals in aqueous solution: the hexatantalate , 1963 .

[93]  M. Fujita,et al.  A remarkable organometallic transformation on a cage-incarcerated dinuclear ruthenium complex. , 2012, Angewandte Chemie.

[94]  J. Marrot,et al.  A Supramolecular tetra-Dawson polyoxothiometalate: [(alpha-H2P2W15O56)4[Mo2O2S2(H2O)2]4[Mo4S4O4(OH)2(H2O)]2]28-. , 2003, Angewandte Chemie.

[95]  Wei Yang,et al.  Evans-Showell-Type Polyoxometalates Constructing High-Dimensional Inorganic-Organic Hybrid Compounds with Copper-Organic Coordination Complexes: Synthesis and Oxidation Catalysis. , 2017, Inorganic chemistry.

[96]  Leroy Cronin,et al.  Polyoxometalates: building blocks for functional nanoscale systems. , 2010, Angewandte Chemie.

[97]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[98]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[99]  Achim Müller,et al.  Formation of a Ring-Shaped Reduced "Metal Oxide" with the Simple Composition [(MoO3 )176 (H2 O)80 H32 ]. , 1998, Angewandte Chemie.

[100]  Scott G. Mitchell,et al.  Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. , 2010, Nature chemistry.

[101]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[102]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[103]  H. Furukawa,et al.  High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. , 2016, Journal of the American Chemical Society.

[104]  A. Cheetham,et al.  Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization. , 2016, Journal of materials chemistry. B.

[105]  A. Müller,et al.  Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide. , 1998, Angewandte Chemie.

[106]  Fei-Yan Yi,et al.  In situ growth of ZIF-8 nanocrystals on layered double hydroxide nanosheets for enhanced CO2 capture. , 2016, Dalton transactions.