Neural networks and predictive matching for flexible imputation

Let be a data matrix, with entries partly missing in the last columns. A problem of practical relevance is that of imputing the missing values in such an incomplete data set. We propose to use (partially) predictive matching coupled with a flexible fit, such as provided by a neural network. The merits and demerits of the approach suggested are discussed.

[1]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[2]  Susanne Rässler Alternative Approaches to Statistical Matching , 2002 .

[3]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[4]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[5]  D. Rubin,et al.  Reducing Bias in Observational Studies Using Subclassification on the Propensity Score , 1984 .

[6]  P W Lavori,et al.  A multiple imputation strategy for clinical trials with truncation of patient data. , 1995, Statistics in medicine.

[7]  Roberta Siciliano,et al.  Multivariate data analysis and modeling through classification and regression trees , 2000 .

[8]  S. van Buuren,et al.  Flexible mutlivariate imputation by MICE , 1999 .

[9]  Pasi Piela,et al.  AUTOMATIC INTERACTION DETECTION FOR IMPUTATION – TESTS WITH THE WAID SOFTWARE PACKAGE , 2000 .

[10]  Jeremy MG Taylor,et al.  Partially parametric techniques for multiple imputation , 1996 .

[11]  S. van Buuren,et al.  Multivariate Imputation by Chained Equations : Mice V1.0 User's manual , 2000 .

[12]  Fernando Tusell,et al.  Tree-based algorithms for missing data imputation , 2000 .

[13]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[14]  P. Allison Multiple Imputation for Missing Data , 2000 .

[15]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[16]  Joseph L Schafer,et al.  Analysis of Incomplete Multivariate Data , 1997 .

[17]  Paul R. Rosenbaum,et al.  Comparison of Multivariate Matching Methods: Structures, Distances, and Algorithms , 1993 .

[18]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[19]  J. Gower A General Coefficient of Similarity and Some of Its Properties , 1971 .