Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface.

Quantum networks require functional nodes consisting of stationary registers with the capability of high-fidelity quantum processing and storage, which efficiently interface with photons propagating in an optical fiber. We report a significant step towards realization of such nodes using a diamond nanocavity with an embedded silicon-vacancy (SiV) color center and a proximal nuclear spin. Specifically, we show that efficient SiV-cavity coupling (with cooperativity C>30) provides a nearly deterministic interface between photons and the electron spin memory, featuring coherence times exceeding 1 ms. Employing coherent microwave control, we demonstrate heralded single photon storage in the long-lived spin memory as well as a universal control over a cavity-coupled two-qubit register consisting of a SiV and a proximal ^{13}C nuclear spin with nearly second-long coherence time, laying the groundwork for implementing quantum repeaters.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  E. Hahn,et al.  ELECTRON-SPIN-ECHO ENVELOPE MODULATION , 1965 .

[3]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[4]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[5]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[6]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[7]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[8]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[9]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[10]  D. Cory,et al.  Robust decoupling techniques to extend quantum coherence in diamond. , 2010, Physical review letters.

[11]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[12]  D. Gottesman,et al.  Longer-baseline telescopes using quantum repeaters. , 2011, Physical review letters.

[13]  R. Blatt,et al.  Tunable Ion-Photon Entanglement in an Optical Cavity , 2012, Nature.

[14]  S. Bennett,et al.  Sensing distant nuclear spins with a single electron spin. , 2012, Physical review letters.

[15]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[16]  R Hanson,et al.  Universal control and error correction in multi-qubit spin registers in diamond. , 2013, Nature nanotechnology.

[17]  Philip Hemmer,et al.  All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. , 2014, Physical review letters.

[18]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[19]  Norbert Kalb,et al.  A quantum gate between a flying optical photon and a single trapped atom , 2014, Nature.

[20]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[21]  M. Lukin,et al.  Indistinguishable photons from separated silicon-vacancy centers in diamond. , 2014, Physical review letters.

[22]  Christian Hepp,et al.  Optical signatures of silicon-vacancy spins in diamond. , 2014, Nature communications.

[23]  D. Awschalom,et al.  Probing surface noise with depth-calibrated spins in diamond. , 2014, Physical review letters.

[24]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[25]  Neil B. Manson,et al.  Electron–phonon processes of the silicon-vacancy centre in diamond , 2014, 1411.2871.

[26]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[27]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[28]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[29]  Norbert Kalb,et al.  Heralded Storage of a Photonic Quantum Bit in a Single Atom. , 2015, Physical review letters.

[30]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[31]  M. Plenio,et al.  Robust dynamical decoupling sequences for individual-nuclear-spin addressing , 2015, 1506.03766.

[32]  Mihir K. Bhaskar,et al.  A fiber-coupled diamond quantum nanophotonic interface , 2016, 1612.05285.

[33]  E. Waks,et al.  A quantum phase switch between a single solid-state spin and a photon. , 2015, Nature nanotechnology.

[34]  Mihir K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[35]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[36]  G. Rempe,et al.  Cavity Carving of Atomic Bell States. , 2017, Physical review letters.

[37]  Coherent control of the silicon-vacancy spin in diamond , 2017, Nature communications.

[38]  Donovan Buterakos,et al.  Deterministic generation of all-photonic quantum repeaters from solid-state emitters , 2016, 1612.03869.

[39]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[40]  Aroosa Ijaz,et al.  Optical and microwave control of germanium-vacancy center spins in diamond , 2016, 1612.02947.

[41]  Zhe Sun,et al.  Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot. , 2017, Physical review letters.

[42]  Bastian Hacker,et al.  Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity , 2018, 1801.05980.

[43]  N. Kalb,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[44]  Dirk Englund,et al.  Lead-Related Quantum Emitters in Diamond , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[45]  A. S. Zibrov,et al.  Photon-mediated interactions between quantum emitters in a diamond nanocavity , 2018, Science.

[46]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[47]  M. Hugues,et al.  Coherence of a dynamically decoupled quantum-dot hole spin , 2017, Physical Review B.

[48]  P. Stroganov,et al.  An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond , 2019, Physical Review B.

[49]  Mihir K. Bhaskar,et al.  Quantum Interference of Electromechanically Stabilized Emitters in Nanophotonic Devices , 2019, Physical Review X.

[50]  M. Plenio,et al.  Initialization and Readout of Nuclear Spins via a Negatively Charged Silicon-Vacancy Center in Diamond. , 2019, Physical review letters.

[51]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[52]  R. Hanson,et al.  Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes , 2019, Nano letters.

[53]  D. J. Twitchen,et al.  A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute , 2019, Physical Review X.

[54]  P. Alam ‘W’ , 2021, Composites Engineering.

[55]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[56]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[57]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[58]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[59]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[60]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.