Learning and Optimization for Turbulent Flows

[1]  J. Lumley,et al.  Remarks on turbulent constitutive relations , 1993 .

[2]  Joaquim R. R. A. Martins,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Systems , 2012 .

[3]  Fernando Porté-Agel,et al.  Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms , 2011 .

[4]  J. Hunt,et al.  Turbulent wind flow over a low hill , 1975 .

[5]  Peter E Hamlington,et al.  Local and nonlocal strain rate fields and vorticity alignment in turbulent flows. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  N. Troldborg,et al.  An improved k‐ ϵ model applied to a wind turbine wake in atmospheric turbulence , 2015 .

[7]  J. Michalakes,et al.  A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics , 2012 .

[8]  Ivan Marusic,et al.  Universal aspects of small-scale motions in turbulence , 2010, Journal of Fluid Mechanics.

[9]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[10]  Steven A. Orszag,et al.  Turbulence: Challenges for Theory and Experiment , 1990 .

[11]  Simon W. Funke,et al.  Tidal turbine array optimisation using the adjoint approach , 2013, ArXiv.

[12]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[13]  B. Koren,et al.  Review of computational fluid dynamics for wind turbine wake aerodynamics , 2011 .

[14]  David Duvenaud,et al.  Automatic model construction with Gaussian processes , 2014 .

[15]  S. Ghosal Mathematical and Physical Constraints on Large-Eddy Simulation of Turbulence , 1999 .

[16]  Johan Meyers,et al.  Optimal Coordinated Control of Power Extraction in LES of a Wind Farm with Entrance Effects , 2016 .

[17]  Jimy Dudhia,et al.  Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model , 2012 .

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  Alexander J. Smola,et al.  Hilbert space embeddings of conditional distributions with applications to dynamical systems , 2009, ICML '09.

[20]  Marc G. Genton,et al.  Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..

[21]  A. Jameson,et al.  Optimum Aerodynamic Design Using the Navier–Stokes Equations , 1997 .

[22]  A. Crespo,et al.  Advances in large-eddy simulation of a wind turbine wake , 2007 .

[23]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[24]  Jean-Luc Guermond,et al.  Mathematical Perspectives on Large Eddy Simulation Models for Turbulent Flows , 2004 .

[25]  E. S. Politis,et al.  Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore , 2009, Renewable Energy.

[26]  Le Song,et al.  A unified kernel framework for nonparametric inference in graphical models ] Kernel Embeddings of Conditional Distributions , 2013 .

[27]  Charles A. Micchelli,et al.  On Learning Vector-Valued Functions , 2005, Neural Computation.

[28]  Peter E. Hamlington,et al.  Reynolds stress closure for nonequilibrium effects in turbulent flows , 2008 .

[29]  F. Sarghini,et al.  Neural networks based subgrid scale modeling in large eddy simulations , 2003 .

[30]  Charles A. Micchelli,et al.  Universal Multi-Task Kernels , 2008, J. Mach. Learn. Res..

[31]  K. Duraisamy,et al.  Adjoint Based Techniques for Uncertainty Quantification in Turbulent Flows with Combustion , 2012 .

[32]  Julio Hernández,et al.  Survey of modelling methods for wind turbine wakes and wind farms , 1999 .

[33]  Michael B. Giles,et al.  Discrete Adjoint Approximations with Shocks , 2003 .

[34]  J. Templeton Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty , 2015 .

[35]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .

[36]  P. Courtier,et al.  Important literature on the use of adjoint, variational methods and the Kalman filter in meteorology , 1993 .

[37]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[38]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[39]  J. Larsson,et al.  Towards adjoint sensitivity analysis of statistics in turbulent flow simulation , 2012 .

[40]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[41]  Anders Logg Automated solution of differential equations , 2007 .

[42]  Andrew Ning,et al.  Wind plant system engineering through optimization of layout and yaw control , 2016 .

[43]  Gregory C. Burton,et al.  Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing , 2005 .

[44]  S. Pope A more general effective-viscosity hypothesis , 1975, Journal of Fluid Mechanics.

[45]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[46]  E. Lorenz,et al.  The predictability of a flow which possesses many scales of motion , 1969 .

[47]  Javier Serrano González,et al.  Optimization of wind farm turbines layout using an evolutive algorithm , 2010 .

[48]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[49]  Neil D. Lawrence,et al.  Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..

[50]  Jonathan B. Freund,et al.  A practical discrete-adjoint method for high-fidelity compressible turbulence simulations , 2015, J. Comput. Phys..

[51]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[52]  M. Giles,et al.  Adjoint equations in CFD: duality, boundary conditions and solution behaviour , 1997 .

[53]  Jean-Pierre Bertoglio,et al.  Time-reversibility of Navier-Stokes turbulence and its implication for subgrid scale models , 2011, 1112.0659.

[54]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[55]  Hervé Jeanmart,et al.  On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation , 2001, Journal of Fluid Mechanics.

[56]  C. Meneveau,et al.  Large eddy simulation study of fully developed wind-turbine array boundary layers , 2010 .

[57]  Qiqi Wang,et al.  Progress and Challenges in Sensitivity Computation of Chaotic Fluid Flow Simulations , 2013 .

[58]  Jason R. Marden,et al.  A Model-Free Approach to Wind Farm Control Using Game Theoretic Methods , 2013, IEEE Transactions on Control Systems Technology.

[59]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[60]  A. Jameson Optimum aerodynamic design using CFD and control theory , 1995 .

[61]  George Scott,et al.  Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach , 2014 .

[62]  David A. Ham,et al.  Automated Derivation of the Adjoint of High-Level Transient Finite Element Programs , 2013, SIAM J. Sci. Comput..

[63]  J. F. Ainslie,et al.  CALCULATING THE FLOWFIELD IN THE WAKE OF WIND TURBINES , 1988 .

[64]  Michael B. Giles,et al.  Analytic adjoint solutions for the quasi-one-dimensional Euler equations , 2001, Journal of Fluid Mechanics.

[65]  Amy Stidworthy,et al.  TOPFARM - next generation design tool for optimisation of wind farm topology and operation , 2011 .

[66]  F. Porté-Agel,et al.  Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects , 2012, Boundary-Layer Meteorology.

[67]  Jonathan Cagan,et al.  An Extended Pattern Search Approach to Wind Farm Layout Optimization , 2012, DAC 2010.

[68]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[69]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[70]  A. Jameson,et al.  Aerodynamic shape optimization techniques based on control theory , 1998 .

[71]  B. Geurts,et al.  Realizability conditions for the turbulent stress tensor in large-eddy simulation , 1994, Journal of Fluid Mechanics.

[72]  Peter E. Hamlington,et al.  Autonomic subgrid-scale closure for large eddy simulations , 2015 .

[73]  R. Errico What is an adjoint model , 1997 .

[74]  Issues for a Mathematical Definition of LES , 2006 .

[75]  J. Meyers,et al.  Optimal control of energy extraction in wind-farm boundary layers , 2015, Journal of Fluid Mechanics.

[76]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization: A survey of architectures , 2013 .

[77]  Charles A. Micchelli,et al.  Learning Multiple Tasks with Kernel Methods , 2005, J. Mach. Learn. Res..

[78]  E. Novikov,et al.  Parameterization of subgrid-scale stress by the velocity gradient tensor , 1993 .

[79]  W. Dahm,et al.  Nonlocal form of the rapid pressure-strain correlation in turbulent flows. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[81]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[82]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[83]  Laurent Gicquel,et al.  Multiscale and Multiresolution Approaches in TurbulenceP. Sagaut, S. Deck, and M. Terracol, 2nd ed., Imperial College Press, London, 2013, 448 pp., 128 hardcover and 96 ebook. , 2015 .

[84]  Luis Santos,et al.  Aerodynamic shape optimization using the adjoint method , 2007 .

[85]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[86]  P. Moin,et al.  A General Class of Commutative Filters for LES in Complex Geometries , 1998 .

[87]  Jason R. Marden,et al.  Wind plant power optimization through yaw control using a parametric model for wake effects—a CFD simulation study , 2016 .

[88]  D. Wilcox Turbulence modeling for CFD , 1993 .

[89]  Alexandre J. Chorin,et al.  On the prediction of large-scale dynamics using unresolved computations , 1998 .

[90]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[91]  R. Moser,et al.  Optimal large-eddy simulation results for isotropic turbulence , 2004, Journal of Fluid Mechanics.

[92]  J. A. Domaradzki,et al.  Large eddy simulations without explicit eddy viscosity models , 2010 .

[93]  Ryan N King,et al.  Autonomic closure for turbulence simulations. , 2016, Physical review. E.

[94]  D. Jager,et al.  NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data) , 1996 .

[95]  G. Schubert,et al.  Inverse problem of thermal convection: numerical approach and application to mantle plume restoration , 2004 .

[96]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[97]  A. Crespo,et al.  Comparison of turbulence models for the computational fluid dynamics simulation of wind turbine wakes in the atmospheric boundary layer , 2011 .

[98]  Bernhard Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, International Conference on Machine Learning.

[99]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[100]  Johan Meyers,et al.  Optimal turbine spacing in fully developed wind farm boundary layers , 2012 .

[101]  Peter E. Hamlington,et al.  A NEW AUTONOMIC CLOSURE FOR LARGE EDDY SIMULATIONS , 2015, Proceeding of Ninth International Symposium on Turbulence and Shear Flow Phenomena.

[102]  Thomas B. Gatski,et al.  Constitutive equations for turbulent flows , 2004 .

[103]  C. G. Speziale Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence , 1985, Journal of Fluid Mechanics.

[104]  F. Fleuret,et al.  Scale-Invariance of Support Vector Machines based on the Triangular Kernel , 2001 .

[105]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[106]  Qiqi Wang,et al.  Forward and adjoint sensitivity computation of chaotic dynamical systems , 2012, J. Comput. Phys..

[107]  F. Porté-Agel,et al.  Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations , 2011 .

[108]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[109]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[110]  Krystel K. Castillo-Villar,et al.  A Review of Methodological Approaches for the Design and Optimization of Wind Farms , 2014 .

[111]  M. Germano The simplest decomposition of a turbulent field , 2012 .

[112]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[113]  J. Guermond,et al.  On the construction of suitable solutions to the Navier-Stokes equations and questions regarding the definition of large eddy simulation , 2005 .

[114]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[115]  Peter Graf,et al.  Adjoint Optimization of Wind Farm Layouts for Systems Engineering Analysis , 2016 .

[116]  Jean-Luc Guermond,et al.  On the use of the notion of suitable weak solutions in CFD , 2008 .

[117]  P. Luchini,et al.  Adjoint Equations in Stability Analysis , 2014, 2404.17304.

[118]  C. Fureby,et al.  Mathematical and Physical Constraints on Large-Eddy Simulations , 1997 .

[119]  M. Rotea,et al.  Reduced order model for optimization of power production from a wind farm , 2016 .

[120]  Bernhard Schölkopf,et al.  A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression , 2006, Neural Computation.

[121]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[122]  John L. Lumley,et al.  Toward a turbulent constitutive relation , 1970, Journal of Fluid Mechanics.

[123]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[124]  Andrew Kusiak,et al.  Design of wind farm layout for maximum wind energy capture , 2010 .

[125]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[126]  Kyriakos C. Giannakoglou,et al.  Adjoint Methods for Shape Optimization , 2008 .

[127]  Luciano Castillo,et al.  Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation , 2012 .

[128]  Johan Meyers,et al.  Wind-farm layout optimisation using a hybrid Jensen–LES approach , 2016 .

[129]  Yi Li,et al.  A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence , 2008, 0804.1703.

[130]  C. Masson,et al.  An extended k–ε model for turbulent flow through horizontal-axis wind turbines , 2008 .

[131]  Karthikeyan Duraisamy,et al.  Machine Learning Methods for Data-Driven Turbulence Modeling , 2015 .

[132]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[133]  M. Giles On adjoint equations for error analysis and optimal grid adaptation in CFD , 1997 .

[134]  Vladimir Scheffer Hausdorff measure and the Navier-Stokes equations , 1977 .

[135]  Dimitri J. Mavriplis,et al.  Error estimation and adaptation for functional outputs in time-dependent flow problems , 2009, Journal of Computational Physics.

[136]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[137]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[138]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[139]  Niels N. Sørensen,et al.  The k-ε-fP model applied to wind farms , 2015 .

[140]  Cristina H. Amon,et al.  Wind Farm Layout Optimization Considering Energy Generation and Noise Propagation , 2012, DAC 2012.

[141]  J. Walmsley,et al.  A simple model of neutrally stratified boundary-layer flow over complex terrain with surface roughness modulations (MS3DJH/3R) , 1986 .

[142]  N. Jensen A note on wind generator interaction , 1983 .

[143]  K. Duraisamy,et al.  Error Estimation for High Speed Flows Using Continuous and Discrete Adjoints , 2010 .

[144]  J. Mercer Functions of positive and negative type, and their connection with the theory of integral equations , 1909 .