A new GRASS GIS toolkit for Hortonian analysis of drainage networks

The aim of this paper is to present a new GRASS GIS toolset designed for Hortonian analysis of drainage networks. The r.stream toolset uses a multiple flow direction algorithm for stream network extraction as well as for calculating other hydrogeomorphological features in the catchment's area. As all GRASS GIS toolsets, r.stream consists of several separate modules that can extract stream networks from a spectrum of accumulation maps, order the extracted network using several ordering methods, do advanced modeling of basin's boundary, perform Hortonian statistics, calculate additional parameters such as flow path distance to watershed elements, partition ordered and unordered networks into near-straight-line sectors, and calculate sector directions. The package is free and open-source software, available for GRASS version 6.4 and later.

[1]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[2]  Lubos Mitas,et al.  Path sampling method for modeling overland water flow, sediment transport, and short term terrain evolution in Open Source GIS , 2004 .

[3]  Tinghua Ai,et al.  The drainage network extraction from contour lines for contour line generalization , 2007 .

[4]  Serge Massicotte,et al.  Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network , 2001 .

[5]  S. Running,et al.  Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology , 1993 .

[6]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[7]  H. Mitásová,et al.  GIS-based Stream Network Analysis for The Chagres Basin , Republic of Panama , 2007 .

[8]  D. Montgomery,et al.  Where do channels begin? , 1988, Nature.

[9]  Jeffrey Scott Vitter,et al.  Efficient Flow Computation on Massive Grid Terrain Datasets , 2003, GeoInformatica.

[10]  Alessandro Marani,et al.  A Note on Fractal Channel Networks , 1991 .

[11]  Helena Mitasova,et al.  Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search , 2011 .

[12]  David M. Mark,et al.  Part 4: Mathematical, Algorithmic and Data Structure Issues: Automated Detection Of Drainage Networks From Digital Elevation Models , 1984 .

[13]  J. T. Hack Studies of longitudinal stream profiles in Virginia and Maryland , 1957 .

[14]  John B. Lindsay,et al.  Sensitivity of channel mapping techniques to uncertainty in digital elevation data , 2006, Int. J. Geogr. Inf. Sci..

[15]  R. L. Shreve,et al.  Variation of mainstream length with basin area in river networks , 1974 .

[16]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[17]  P. Holmgren Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation , 1994 .

[18]  Lubos Mitas,et al.  Multiscale Soil Erosion Simulations For Land Use Management , 2001 .

[19]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[20]  M. Hutchinson A new procedure for gridding elevation and stream line data with automatic removal of spurious pits , 1989 .

[21]  L. Martz,et al.  Automated extraction of drainage network and watershed data from digital elevation models , 1993 .

[22]  Tomasz F. Stepinski,et al.  Identification of geologic contrasts from landscape dissection pattern: An application to the Cascade Range, Oregon, USA , 2008 .

[23]  T. G. Freeman,et al.  Calculating catchment area with divergent flow based on a regular grid , 1991 .

[24]  D. Montgomery,et al.  Analysis of Erosion Thresholds, Channel Networks, and Landscape Morphology Using a Digital Terrain Model , 1993, The Journal of Geology.

[25]  G. R. Foster,et al.  REVISED UNIVERSAL SOIL LOSS EQUATION , 2003 .

[26]  L. F. Huggins,et al.  ANSWERS: A Model for Watershed Planning , 1980 .

[27]  Pankaj K. Agarwal,et al.  TerraStream: from elevation data to watershed hierarchies , 2007, GIS.

[28]  Charles Ichoku,et al.  A combined algorithm for automated drainage network extraction , 1992 .

[29]  Jaroslav Hofierka,et al.  Modelling Topographic Potential for Erosion and Deposition Using GIS , 1996, Int. J. Geogr. Inf. Sci..

[30]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[31]  James Westervelt,et al.  R.MAPCALC: An Algebra for GIS and Image Processing , 1994 .

[32]  L. Band Topographic Partition of Watersheds with Digital Elevation Models , 1986 .

[33]  R. A. MacMillan,et al.  A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic , 2000, Fuzzy Sets Syst..

[34]  John B. Lindsay A physically based model for calculating contributing area on hillslopes and along valley bottoms , 2003 .

[35]  J. Strobl,et al.  SAGA-analysis and modelling applications , 2006 .

[36]  J. Lindsay,et al.  Removal of artifact depressions from digital elevation models: towards a minimum impact approach , 2005 .

[37]  Cass T. Miller Computational methods in water resources : proceedings of the XVth International Conference on Computational Methods in Water Resources (CMWR XV), June 13-17, 2004, Chapel Hill, NC, USA , 2004 .

[38]  Tomasz F. Stepinski,et al.  Automatic mapping of valley networks on Mars , 2007, Comput. Geosci..

[39]  V. Singh,et al.  Computer Models of Watershed Hydrology , 1995 .

[40]  M. Costa-Cabral,et al.  Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas , 1994 .

[41]  C. K. Mutchler,et al.  Revised slope steepness factor for the universal soil loss equation , 1987 .

[42]  T. Hengl,et al.  Geomorphometry: Concepts, software, applications , 2009 .

[43]  Susan K. Jenson,et al.  AUTOMATED DERIVATION OF HYDROLOGIC BASIN CHARACTERISTICS FROM DIGITAL ELEVATION MODEL DATA , 1984 .

[44]  Andrea Tribe,et al.  Automated recognition of valley heads from digital elevation models , 1991 .

[45]  D. Tarboton,et al.  Advances in the mapping of flow networks from digital elevation data , 2001 .

[46]  Praveen Kumar,et al.  On the use of digital elevation model data for Hortonian and fractal analyses of channel networks , 1993 .

[47]  A. Howard Theoretical model of optimal drainage networks , 1990 .

[48]  A. Howard Optimal Angles of Stream Junction: Geometric, Stability to Capture, and Minimum Power Criteria , 1971 .

[49]  Jose A. Ventura,et al.  Segmentation of Planar Curves into Straight-Line Segments and Elliptical Arcs , 1997, CVGIP Graph. Model. Image Process..

[50]  D. Scott Mackay,et al.  A general model of watershed extraction and representation using globally optimal flow paths and up-slope contributing areas , 2000, Int. J. Geogr. Inf. Sci..

[51]  Adrian E. Scheidegger,et al.  TOPOLOGICAL SIGNIFICANCE OF STREAM LABELING METHODS , 1968 .

[52]  David B. Beasley,et al.  ANSWERS: A hydrologic / water quality simulator for watershed research , 1978, WSC '78.

[53]  A. Rinaldo,et al.  Fractal River Basins: Chance and Self-Organization , 1997 .

[54]  John B. Lindsay,et al.  The Terrain Analysis System: a tool for hydro‐geomorphic applications , 2005 .

[55]  Kenneth G. Renard,et al.  Revised Universal Soil Loss Equation for western rangelands , 1987 .

[56]  Lubos Mitas,et al.  Distributed soil erosion simulation for effective erosion prevention , 1998 .

[57]  M. Franchini,et al.  Path‐based methods for the determination of nondispersive drainage directions in grid‐based digital elevation models , 2003 .

[58]  Rajmund Galon,et al.  Morphology of the Noteć-Warta (or Toruń-Eberswalde) ice marginal streamway , 1961 .

[59]  Domenica Taruscio,et al.  Classification and codification of rare diseases. , 2012, Journal of clinical epidemiology.

[60]  David A. Kinner,et al.  GIS-Based Stream Network Analysis for the Upper Río Chagres Basin, Panama , 2005 .

[61]  Lars Arge,et al.  Flow Computation on Massive Grid Terrains , 2001 .

[62]  K. Beven,et al.  The in(a/tan/β) index:how to calculate it and how to use it within the topmodel framework , 1995 .

[63]  David H. Douglas,et al.  Detection of Surface-Specific Points by Local Parallel Processing of Discrete Terrain Elevation Data , 1975 .

[64]  R. L. Shreve Infinite Topologically Random Channel Networks , 1967, The Journal of Geology.

[65]  Adrian E. Scheidegger,et al.  Statistical description of river networks , 1966 .

[66]  L. Martz,et al.  The assignment of drainage direction over flat surfaces in raster digital elevation models , 1997 .

[67]  D. Montgomery,et al.  Channel Initiation and the Problem of Landscape Scale , 1992, Science.

[68]  A. N. Strahler Quantitative analysis of watershed geomorphology , 1957 .

[69]  Jeffrey Scott Vitter,et al.  Flow computation on massive grids , 2001, GIS '01.

[70]  David H. Douglas EXPERIMENTS TO LOCATE RIDGES AND CHANNELS TO CREATE A NEW TYPE OF DIGITAL ELEVATION MODEL , 1987 .

[71]  R. Horton Drainage‐basin characteristics , 1932 .

[72]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[73]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .