The In-band Network Telemetry (INT) enables hop-by-hop device-internal state exposure for reliably maintaining and troubleshooting data center networks. For achieving network-wide telemetry, orchestration on top of the INT primitive is further required. One straightforward solution is to flood the INT probe packets into the network topology for maximum measurement coverage, which, however, leads to huge bandwidth overhead. A refined solution is to leverage the SDN controller to collect the topology and carry out centralized probing path planning, which, however, cannot seamlessly adapt to occasional topology changes. To tackle the above problems, in this work, we propose INT-label, a lightweight In-band Network-Wide Telemetry architecture via interval-based distributed labelling. INT-label periodically labels device-internal states onto sampled packets, which is cost-effective with minor bandwidth overhead and able to seamlessly adapt to topology changes. Furthermore, to avoid telemetry resolution degradation due to loss of labelled packets, we also design a feedback mechanism to adaptively change the instant label frequency. Evaluation on software P4 switches suggests that INT-label can achieve 99.72% measurement coverage under a label frequency of 20 times per second. With adaptive labelling enabled, the coverage can still reach 92% even if 60% of the packets are lost in the data plane.