Room-temperature antiferromagnetic memory resistor.

The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

[1]  Josef Kudrnovsky,et al.  Ab initiotheory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys , 2012 .

[2]  R. Duine Spintronics: An alternating alternative. , 2011, Nature materials.

[3]  P. Blom,et al.  Universal arrhenius temperature activated charge transport in diodes from disordered organic semiconductors. , 2008, Physical review letters.

[4]  Prospect for room temperature tunneling anisotropic magnetoresistance effect: Density of states anisotropies in CoPt systems , 2006, cond-mat/0601071.

[5]  C. W. Chen,et al.  MOSSBAUER STUDY OF HYPERFINE FIELDS AND ISOMER SHIFTS IN THE Fe-Rh ALLOYS , 1963 .

[6]  T. Jungwirth,et al.  Anisotropic magnetoresistance in an antiferromagnetic semiconductor , 2014, Nature Communications.

[7]  H. Ebert,et al.  First-Principles Theory of Spontaneous-Resistance Anisotropy and Spontaneous Hall Effect in Disordered Ferromagnetic Alloys , 1995 .

[8]  E. Fullerton,et al.  Magnetotransport properties of epitaxial MgO(001)/FeRh films across the antiferromagnet to ferromagnet transition , 2011 .

[9]  T. Jungwirth,et al.  Anisotropic magnetoresistance in antiferromagnetic semiconductor Sr2IrO4 epitaxial heterostructure , 2013, 1303.4704.

[10]  P. Oppeneer,et al.  Anisotropic x-ray magnetic linear dichroism at theL2,3edges of cubic Fe, Co, and Ni:Abinitiocalculations and model theory , 2003 .

[11]  F. Zeng,et al.  Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. , 2012, Physical review letters.

[12]  E. Albisetti,et al.  Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling , 2013 .

[13]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[14]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[15]  H. Padmore,et al.  Principles of X-ray magnetic dichroism spectromicroscopy , 1998 .

[16]  G. Schmidt,et al.  Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. , 2004, Physical review letters.

[17]  T. Mcguire,et al.  Anisotropic magnetoresistance in ferromagnetic 3d alloys , 1975 .

[18]  L. Brey,et al.  Tunnel magnetoresistance in GaMnAs: Going beyond Jullière formula , 2004 .

[19]  J. Hayakawa,et al.  Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks. , 2011, Physical review letters.

[20]  U. Nowak,et al.  Giant magnetic anisotropy of the bulk antiferromagnets IrMn and IrMn 3 from first principles , 2008, 0808.3900.

[21]  J. Hayakawa,et al.  A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. , 2011, Nature materials.

[22]  L. Brey,et al.  Tunnel magnetoresistance in GaMnAs: Going beyond Jullière formula , 2004, cond-mat/0405473.

[23]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[24]  W Wegscheider,et al.  Tunneling anisotropic magnetoresistance and spin-orbit coupling in Fe/GaAs/Au tunnel junctions. , 2007, Physical review letters.

[25]  J. Wunderlich,et al.  Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics , 2010, 1002.2151.

[26]  C. Quitmann,et al.  Imaging the antiferromagnetic to ferromagnetic first order phase transition of FeRh , 2013, 1301.4164.

[27]  H. Ebert,et al.  Electronic conductivity in Ni x Cr 1¿x and Ni x Cu 1¿x fcc alloy systems , 2003 .

[28]  A. Sakuma,et al.  Magnetic anisotropy energy of antiferromagnetic L10-type equiatomic Mn alloys , 2006 .

[29]  J. Sinova,et al.  Observation of a Berry phase anti-damping spin-orbit torque , 2013, 1306.1893.

[30]  William Thomson,et al.  On the Electro-Dynamic Qualities of Metals:--Effects of Magnetization on the Electric Conductivity of Nickel and of Iron , 1856 .

[31]  A. Kirilyuk,et al.  Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 , 2004, Nature.

[32]  J. Wunderlich,et al.  Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlO_(x)/Pt structures. , 2008, Physical review letters.

[33]  D. Eigler,et al.  Bistability in Atomic-Scale Antiferromagnets , 2012, Science.

[34]  I. Turek,et al.  Residual resistivity and its anisotropy in random CoNi and CuNi ferromagnetic alloys , 2010 .