Influence of the substrate orientation on Si incorporation in molecular‐beam epitaxial GaAs

The incorporation of Ge in GaAs layers grown simultaneously on (100), (311)A, and (311)B GaAs substrates by molecular‐beam epitaxy has been studied using Hall‐effect measurements, photothermal ionization spectroscopy, and photoluminescence. The quantitative analysis shows that Ge is more amphoteric than Si, but the orientation dependence of the amphoteric behavior of Ge is similar to Si. The amphoteric site preference of Ge is more selective for growth on the (311) polar orientation than on the (100) nonpolar orientation. Like Si, Ge incorporates predominantly as a donor in (311)B growth, while it incorporates predominantly as an acceptor in (311)A growth.

[1]  C. Foxon,et al.  Interaction kinetics of As2 and Ga on {100} GaAs surfaces , 1977 .

[2]  Y. G. Chai,et al.  The effect of growth conditions on Si incorporation in molecular beam epitaxial GaAs , 1981 .

[3]  E. Mendez,et al.  High mobility two‐dimensional hole gas in an Al0.26Ga0.74As/GaAs heterojunction , 1986 .

[4]  K. Ploog,et al.  The effect of arsenic vapour species on electrical and optical properties of GaAs grown by molecular beam epitaxy , 1982 .

[5]  Y. Mori,et al.  Carbon incorporation in metalorganic chemical vapor deposition (Al,Ga)As films grown on (100), (311)A, and (311)B oriented GaAs substrates , 1987 .

[6]  K. Ploog,et al.  Quantitative evaluation of substrate temperature dependence of Ge incorporation in GaAs during molecular beam epitaxy , 1980 .

[7]  C. M. Wolfe,et al.  Ionized Impurity Density in n‐Type GaAs , 1970 .

[8]  J. S. Ahearn,et al.  Molecular‐beam‐epitaxial growth of GaAs(331) , 1987 .

[9]  G. Stillman,et al.  Excited-state-donor--to--acceptor transitions in the photoluminescence spectrum of GaAs and InP , 1984 .

[10]  G. Davies,et al.  Germanium doping of gallium arsenide grown by molecular beam epitaxy — Some thermodynamic aspects , 1980 .

[11]  Z. Y. Chen,et al.  Germanium incorporation in heavily doped molecular beam epitaxy grown GaAs:Ge , 1985 .

[12]  D. J. Ashen,et al.  The incorporation and characterisation of acceptors in epitaxial GaAs , 1975 .

[13]  J. R. Arthur Gallium Arsenide Surface Structure and Reaction Kinetics: Field Emission Microscopy , 1966 .

[14]  G. Stillman,et al.  Orientation dependent amphoteric behavior of group IV impurities in the molecular beam epitaxial and vapor phase epitaxial growth of GaAs , 1989 .

[15]  J. Merz,et al.  Molecular‐beam‐epitaxial growth and selected properties of GaAs layers and GaAs/(Al,Ga)As superlattices with the (211) orientation , 1986 .

[16]  D. C. Reynolds,et al.  Low compensation vapor phase epitaxial gallium arsenide , 1983 .

[17]  E. Mendez,et al.  Photoluminescence study of the incorporation of silicon in GaAs grown by molecular beam epitaxy , 1983 .

[18]  L. Eastman,et al.  Residual impurities in high purity GaAs epitaxial layers grown by liquid phase epitaxy , 1980 .

[19]  H. Queisser,et al.  Shallow acceptor luminescence in GaAs grown by liquid phase epitaxy , 1972 .

[20]  D. Collins,et al.  Low temperature photoluminescence of lightly Si-doped and undoped MBE GaAs , 1982 .

[21]  L. Esaki,et al.  Crystal orientation dependence of silicon doping in molecular beam epitaxial AlGaAs/GaAs heterostructures , 1985 .

[22]  H. M. Manasevit,et al.  An analytical evaluation of GaAs grown with commercial and repurified trimethylgallium , 1982 .

[23]  G. Stillman,et al.  Residual donors and acceptors in high-purity GaAs and InP grown by hydride VPE , 1983 .

[24]  A. Cho,et al.  P‐N Junction Formation during Molecular‐Beam Epitaxy of Ge‐Doped GaAs , 1971 .

[25]  James C. M. Hwang,et al.  Characterization of high-purity Si-doped molecular beam epitaxial GaAs , 1984 .

[26]  W. Spitzer,et al.  Direct evidence for the site of substitutional carbon impurity in GaAs , 1982 .

[27]  T. Nakanisi,et al.  Effects of the Growth Temperature and Substrate Orientation on the Incorporation of Si, Ge and Sn into Vapour Epitaxial GaAs , 1974 .

[28]  W. Wang,et al.  High‐purity GaAs grown by molecular‐beam epitaxy , 1986 .