Direct Amidation of Esters via Ball Milling.

The direct mechanochemical amidation of esters - enabled by ball-milling - is herein described. The operationally simple procedure requires inputs of ester, amine, and sub-stoichiometric KOtBu and is applicable to a preparation of a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of API's, agrochemicals, and its ability to deliver gram-scale synthesis of active pharmaceuticals and building blocks is demonstrated, all in the absence of a reaction solvent.

[1]  Hajime Ito,et al.  Tackling Solubility Issues in Organic Synthesis: Solid-State Cross-Coupling of Insoluble Aryl Halides. , 2021, Journal of the American Chemical Society.

[2]  F. Delogu,et al.  The Mechanochemical Beckmann Rearrangement: An Eco-efficient “Cut-and-Paste” Strategy to Design the “Good Old Amide Bond” , 2021 .

[3]  Kazuhiko Sato,et al.  Zirconium Oxide‐Catalyzed Direct Amidation of Unactivated Esters under Continuous‐Flow Conditions , 2021 .

[4]  D. Wei,et al.  Manganese Catalyzed Direct Amidation of Esters with Amines. , 2021, The Journal of organic chemistry.

[5]  José G. Hernández,et al.  Mechanochemical Prebiotic Peptide Bond Formation. , 2020, Angewandte Chemie.

[6]  Jean Martínez,et al.  Epimerization-Free C-Term Activation of Peptide Fragments by Ball Milling. , 2020, Organic letters.

[7]  Louis C. Morrill,et al.  Expedient Organocatalytic Aza-Morita–Baylis–Hillman Reaction through Ball-Milling , 2020, ACS sustainable chemistry & engineering.

[8]  D. Perrin,et al.  Recent developments in catalytic amide bond formation , 2020 .

[9]  Hajime Ito,et al.  Solid‐State Radical C−H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials , 2020, Angewandte Chemie.

[10]  M. Hriberšek,et al.  Mechanochemical Solvent‐Free Catalytic C−H Methylation , 2020, Angewandte Chemie.

[11]  M. Szostak,et al.  Amide Bond Activation: The Power of Resonance , 2020 .

[12]  D. Browne,et al.  A Robust Pd-Catalyzed C-S Cross-Coupling Process Enabled by Ball-Milling. , 2020, Organic letters.

[13]  Hajime Ito,et al.  Solid-State Radical C-H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials. , 2020, Angewandte Chemie.

[14]  M. Szostak,et al.  Non-Classical Amide Bond Formation: Transamidation and Amidation of Activated Amides and Esters by Selective N–C/O–C Cleavage , 2020 .

[15]  G. Lloyd,et al.  Mechanochemical Synthesis of N-Aryl Amides from O-Protected Hydroxamic Acids. , 2020, ChemPlusChem.

[16]  Kamini A. Mishra,et al.  Mechanochemical Synthesis of Amides with Uronium-Based Coupling Reagents: A Method for Hexa-amidation of Biotin[6]uril , 2020, ACS Sustainable Chemistry & Engineering.

[17]  C. Bolm,et al.  Electro‐Mechanochemical Atom Transfer Radical Cyclizations using Piezoelectric BaTiO3 , 2020, Angewandte Chemie.

[18]  C. Bolm,et al.  Direct Visualization of a Mechanochemically Induced Molecular Rearrangement , 2020, Angewandte Chemie.

[19]  C. Bolm,et al.  Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. , 2020, Angewandte Chemie.

[20]  S. James,et al.  Greener Dye Synthesis: Continuous, Solvent‐Free Synthesis of Commodity Perylene Diimides by Twin‐Screw Extrusion , 2020, Angewandte Chemie.

[21]  S. Simelane,et al.  Solvent-Free Iron(III) Chloride-Catalyzed Direct Amidation of Esters , 2020, Molecules.

[22]  A. Miura,et al.  Redox reactions of small organic molecules using ball milling and piezoelectric materials , 2019, Science.

[23]  S. James,et al.  Greener dye synthesis: Continuous, solvent-free synthesis of commodity perylene diimides by Twin Screw Extrusion. , 2019, Angewandte Chemie.

[24]  Louis C. Morrill,et al.  N‐Heterocyclic Carbene Acyl Anion Organocatalysis by Ball‐Milling , 2019, ChemSusChem.

[25]  Bahar Karadeniz,et al.  Investigations of Thermally Controlled Mechanochemical Milling Reactions , 2019, ACS Sustainable Chemistry & Engineering.

[26]  M. Rahman,et al.  Metal-Free Transamidation of Secondary Amides by N-C Cleavage. , 2019, The Journal of organic chemistry.

[27]  Xin Hong,et al.  Highly Chemoselective, Transition-Metal-Free Transamidation of Unactivated Amides and Direct Amidation of Alkyl Esters by N-C/O-C Cleavage. , 2019, Journal of the American Chemical Society.

[28]  S. Newman,et al.  Methyl Esters as Cross-Coupling Electrophiles: Direct Synthesis of Amide Bonds , 2019, ACS Catalysis.

[29]  S. Nolan,et al.  [Pd(NHC)(acac)Cl]: Well-Defined, Air-Stable, and Readily Available Precatalysts for Suzuki and Buchwald-Hartwig Cross-coupling (Transamidation) of Amides and Esters by N-C/O-C Activation. , 2019, Organic letters.

[30]  Fernando Gomollón-Bel Ten Chemical Innovations That Will Change Our World: IUPAC identifies emerging technologies in Chemistry with potential to make our planet more sustainable , 2019, Chemistry International.

[31]  T. Sheppard,et al.  A green chemistry perspective on catalytic amide bond formation , 2019, Nature Catalysis.

[32]  Nicholas J. Turner,et al.  Biocatalysis Using Immobilized Enzymes in Continuous Flow for the Synthesis of Fine Chemicals , 2018, Organic Process Research & Development.

[33]  D. Browne,et al.  Switching Chemoselectivity: Using Mechanochemistry to Alter Reaction Kinetics , 2018, Angewandte Chemie.

[34]  Jean Martínez,et al.  Peptide Couplings by Reactive Extrusion: Solid-Tolerant and Free from Carcinogenic, Mutagenic and Reprotoxic Chemicals , 2018, ACS Sustainable Chemistry and Engineering.

[35]  M. Szostak,et al.  Highly selective transition-metal-free transamidation of amides and amidation of esters at room temperature , 2018, Nature Communications.

[36]  S. Nolan,et al.  Well-Defined Palladium(II)-NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N-C/O-C Cleavage. , 2018, Accounts of chemical research.

[37]  J. Mack,et al.  Insights into Mechanochemical Reactions at Targetable and Stable, Sub‐ambient Temperatures , 2018, Angewandte Chemie.

[38]  J. Mack,et al.  Insights into Mechanochemical Reactions at Targetable and Stable, Sub-ambient Temperatures. , 2018, Angewandte Chemie.

[39]  S. Newman,et al.  Nickel-Catalyzed Amide Bond Formation from Methyl Esters , 2018, Angewandte Chemie.

[40]  S. Newman,et al.  Nickel-Catalyzed Amide Bond Formation from Methyl Esters. , 2018, Angewandte Chemie.

[41]  D. Browne,et al.  Mechanochemical Activation of Zinc and Application to Negishi Cross-Coupling , 2018, Angewandte Chemie.

[42]  D. Browne,et al.  Mechanochemical Activation of Zinc and Application to Negishi Cross‐Coupling , 2018, Angewandte Chemie.

[43]  Jeffrey B. Sperry,et al.  Thermal Stability Assessment of Peptide Coupling Reagents Commonly Used in Pharmaceutical Manufacturing , 2018, Organic Process Research & Development.

[44]  Manuela A. Gîlea,et al.  Mechanochemistry of nucleosides, nucleotides and related materials , 2018, Beilstein journal of organic chemistry.

[45]  C. Bolm,et al.  Mechanochemical Activation of Iron Cyano Complexes: A Prebiotic Impact Scenario for the Synthesis of α-Amino Acid Derivatives. , 2018, Angewandte Chemie.

[46]  Jean Martínez,et al.  1,1′-Carbonyldiimidazole and Mechanochemistry: A Shining Green Combination , 2017 .

[47]  D. Browne,et al.  One-pot multistep mechanochemical synthesis of fluorinated pyrazolones , 2017, Beilstein journal of organic chemistry.

[48]  T. Sheppard,et al.  Borate esters: Simple catalysts for the sustainable synthesis of complex amides , 2017, Science Advances.

[49]  Xile Hu,et al.  Direct amidation of esters with nitroarenes , 2017, Nature Communications.

[50]  Jean Martínez,et al.  N-Acyl Benzotriazole Derivatives for the Synthesis of Dipeptides and Tripeptides and Peptide Biotinylation by Mechanochemistry , 2017 .

[51]  Andrés G. Algarra,et al.  Mechanistic Elucidation of Zirconium-Catalyzed Direct Amidation. , 2017, Journal of the American Chemical Society.

[52]  Carsten Bolm,et al.  Altering Product Selectivity by Mechanochemistry. , 2017, The Journal of organic chemistry.

[53]  Tomislav Friščić,et al.  Mechanochemistry: A Force of Synthesis , 2016, ACS central science.

[54]  J. Campagne,et al.  Nonclassical Routes for Amide Bond Formation. , 2016, Chemical reviews.

[55]  Jean Martínez,et al.  Peptide Mechanosynthesis by Direct Coupling of N‐Protected α‐Amino Acids with Amino Esters , 2016 .

[56]  T. Krause,et al.  Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes , 2016, Nature Communications.

[57]  Jonas Boström,et al.  Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? , 2016, Journal of medicinal chemistry.

[58]  Daniel M. Lowe,et al.  Big Data from Pharmaceutical Patents: A Computational Analysis of Medicinal Chemists' Bread and Butter. , 2016, Journal of medicinal chemistry.

[59]  Gerald A. Weisenburger,et al.  Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals , 2016 .

[60]  S. H. Siddiki,et al.  A Heterogeneous Niobium(V) Oxide Catalyst for the Direct Amidation of Esters , 2015 .

[61]  Y. Shimizu,et al.  Lanthanum(III) triflate catalyzed direct amidation of esters. , 2014, Organic letters.

[62]  T. Sheppard,et al.  Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions , 2013 .

[63]  Jean Martínez,et al.  Environmentally benign peptide synthesis using liquid-assisted ball-milling: application to the synthesis of Leu-enkephalin , 2013 .

[64]  T. Sheppard,et al.  Direct Synthesis of Amides from Carboxylic Acids and Amines Using B(OCH2CF3)3 , 2013, The Journal of organic chemistry.

[65]  Ian A. Watson,et al.  Complexity-Based Metric for Process Mass Intensity in the Pharmaceutical Industry , 2013 .

[66]  I. Halasz,et al.  One-pot mechanosynthesis of aromatic amides and dipeptides from carboxylic acids and amines. , 2012, Chemical communications.

[67]  Jean Martínez,et al.  Mechanosynthesis of amides in the total absence of organic solvent from reaction to product recovery. , 2012, Chemical communications.

[68]  T. Kim,et al.  S-Benzyl Isothiouronium Chloride as a Recoverable Organocatalyst for the Direct Reductive Amination of Ketones with Hantzsch Ester , 2012 .

[69]  K. Mashima,et al.  Sodium methoxide: a simple but highly efficient catalyst for the direct amidation of esters. , 2012, Chemical communications.

[70]  X. Wan,et al.  Cross coupling of acyl and aminyl radicals: direct synthesis of amides catalyzed by Bu4NI with TBHP as an oxidant. , 2012, Angewandte Chemie.

[71]  J. Bode,et al.  Rethinking amide bond synthesis , 2011, Nature.

[72]  Jonathan M. J. Williams,et al.  Metal-catalysed approaches to amide bond formation. , 2011, Chemical Society reviews.

[73]  Concepción Jiménez-González,et al.  Using the Right Green Yardstick: Why Process Mass Intensity Is Used in the Pharmaceutical Industry To Drive More Sustainable Processes , 2011 .

[74]  T. Sheppard,et al.  Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides. , 2011, Organic & biomolecular chemistry.

[75]  E. Juaristi,et al.  Green synthesis of α,β- and β,β-dipeptides under solvent-free conditions. , 2010, The Journal of organic chemistry.

[76]  T. Marcelli Mechanistic insights into direct amide bond formation catalyzed by boronic acids: halogens as Lewis bases. , 2010, Angewandte Chemie.

[77]  Bo Shen,et al.  ‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis , 2010, Nature.

[78]  Jean Martínez,et al.  Solvent-free synthesis of peptides. , 2009, Angewandte Chemie.

[79]  Phil S. Baran,et al.  The economies of synthesis. , 2009, Chemical Society reviews.

[80]  R. Madsen,et al.  Amide synthesis from alcohols and amines by the extrusion of dihydrogen. , 2008, Journal of the American Chemical Society.

[81]  A. Guy,et al.  Microwaves-assisted solvent-free synthesis of N-acetamides by amidation or aminolysis , 2008 .

[82]  Xuechen Li,et al.  New chemistry with old functional groups: on the reaction of isonitriles with carboxylic acids--a route to various amide types. , 2008, Journal of the American Chemical Society.

[83]  Peter H Seeberger,et al.  Trimethylaluminium mediated amide bond formation in a continuous flow microreactor as key to the synthesis of rimonabant and efaproxiral. , 2008, Chemical communications.

[84]  J. Bode,et al.  N-Heterocyclic Carbene-Catalyzed Redox Amidations of α-Functionalized Aldehydes with Amines , 2007 .

[85]  T. Rovis,et al.  Nucleophilic carbene and HOAt relay catalysis in an amide bond coupling: an orthogonal peptide bond forming reaction. , 2007, Journal of the American Chemical Society.

[86]  David Milstein,et al.  Direct Synthesis of Amides from Alcohols and Amines with Liberation of H2 , 2007, Science.

[87]  C. Che,et al.  Oxidative Amide Synthesis and N-Terminal α-Amino Group Ligation of Peptides in Aqueous Medium , 2006 .

[88]  Chao‐Jun Li,et al.  Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. , 2006, Journal of the American Chemical Society.

[89]  B. Trost,et al.  On inventing reactions for atom economy. , 2002, Accounts of chemical research.

[90]  K. Maruoka,et al.  Efficient Synthesis of Aromatic sec-Amides from Esters: Synthetic Utility of Bislithium Amides , 1999 .

[91]  K. Ishihara,et al.  3,4,5-Trifluorobenzeneboronic Acid as an Extremely Active Amidation Catalyst. , 1996, The Journal of organic chemistry.

[92]  Barry M. Trost,et al.  Atom Economy—A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way , 1995 .

[93]  B. M. Trost Atomökonomische Synthesen – eine Herausforderung in der Organischen Chemie: die Homogenkatalyse als wegweisende Methode , 1995 .

[94]  B. Trost,et al.  The atom economy--a search for synthetic efficiency. , 1991, Science.