A Comparison of Information Functions and Search Strategies for Sensor Planning in Target Classification

This paper investigates the comparative performance of several information-driven search strategies and decision rules using a canonical target classification problem. Five sensor models are considered: one obtained from classical estimation theory and four obtained from Bernoulli, Poisson, binomial, and mixture-of-binomial distributions. A systematic approach is presented for deriving information functions that represent the expected utility of future sensor measurements from mutual information, Rènyi divergence, Kullback-Leibler divergence, information potential, quadratic entropy, and the Cauchy-Schwarz distance. The resulting information-driven strategies are compared to direct-search, alert-confirm, task-driven (TS), and log-likelihood-ratio (LLR) search strategies. Extensive numerical simulations show that quadratic entropy typically leads to the most effective search strategy with respect to correct-classification rates. In the presence of prior information, the quadratic-entropy-driven strategy also displays the lowest rate of false alarms. However, when prior information is absent or very noisy, TS and LLR strategies achieve the lowest false-alarm rates for the Bernoulli, mixture-of-binomial, and classical sensor models.

[1]  C. Mcgilchrist Estimation in Generalized Mixed Models , 1994 .

[2]  C. G. Khatri,et al.  A note on a manova model applied to problems in growth curve , 1966 .

[3]  Silvia Ferrari,et al.  Information-Driven Sensor Path Planning by Approximate Cell Decomposition , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Gregory D. Hager Task-Directed Sensor Fusion and Planning: A Computational Approach , 1990 .

[5]  José Carlos Príncipe,et al.  Information Theoretic Clustering , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  G. Zhang,et al.  An Information Roadmap Method for Robotic Sensor Path Planning , 2009, J. Intell. Robotic Syst..

[7]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[8]  Keith D. Kastella,et al.  Search for optimal sensor management , 1996, Defense, Security, and Sensing.

[9]  Keith Kastella Discrimination gain to optimize detection and classification , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[10]  Feng Zhao,et al.  Information-driven dynamic sensor collaboration , 2002, IEEE Signal Process. Mag..

[11]  T.A. Wettergren Performance of search via track-before-detect for distributed sensor networks , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[12]  Gregory D. Hager,et al.  Task-Directed Sensor Fusion and Planning , 1990 .

[13]  Feng Zhao,et al.  Scalable Information-Driven Sensor Querying and Routing for Ad Hoc Heterogeneous Sensor Networks , 2002, Int. J. High Perform. Comput. Appl..

[14]  K. Kastella,et al.  A Comparison of Task Driven and Information Driven Sensor Management for Target Tracking , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Gregory D. Hager,et al.  Computational Methods for Task-directed Sensor Data Fusion and Sensor Planning , 1991, Int. J. Robotics Res..

[16]  Deborah Estrin,et al.  Guest Editors' Introduction: Overview of Sensor Networks , 2004, Computer.

[17]  Chenghui Cai,et al.  Bayesian Network Modeling of Acoustic Sensor Measurements , 2007, 2007 IEEE Sensors.

[18]  Eugene S. McVey,et al.  Multi-process constrained estimation , 1991, IEEE Trans. Syst. Man Cybern..

[19]  Alfred O. Hero,et al.  Applications of entropic spanning graphs , 2002, IEEE Signal Process. Mag..

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[22]  R. Durrett Probability: Theory and Examples , 1993 .

[23]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[24]  Mani Srivastava,et al.  Overview of sensor networks , 2004 .

[25]  William J. Wilson,et al.  Multivariate Statistical Methods , 2005, Technometrics.

[26]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[27]  Aubrey B. Poore,et al.  A Numerical Study of Some Data Association Problems Arising in Multitarget Tracking , 1994 .

[28]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[29]  Deniz Erdogmus,et al.  Generalized information potential criterion for adaptive system training , 2002, IEEE Trans. Neural Networks.

[30]  Andrew M. Kuhn,et al.  Growth Curve Models and Statistical Diagnostics , 2003, Technometrics.

[31]  Wayne W. Schmaedeke Information-based sensor management , 1993, Defense, Security, and Sensing.

[32]  Alfred O. Hero,et al.  Sensor management using an active sensing approach , 2005, Signal Process..

[33]  Mark G. Terwilliger,et al.  Overview of Sensor Networks , 2004 .

[34]  Philip M. Morse,et al.  Methods of Operations Research , 1952 .

[35]  Guoxian Zhang The comparison of information functions in sensor planning , 2010 .

[36]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[37]  Aubrey B. Poore,et al.  Multidimensional assignment formulation of data association problems arising from multitarget and multisensor tracking , 1994, Comput. Optim. Appl..

[38]  Joachim Denzler,et al.  Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  P. Deb Finite Mixture Models , 2008 .

[40]  John W. Fisher,et al.  Learning from Examples with Information Theoretic Criteria , 2000, J. VLSI Signal Process..

[41]  S. Ferrari,et al.  Demining sensor modeling and feature-level fusion by Bayesian networks , 2006, IEEE Sensors Journal.

[42]  Felix Famoye,et al.  Plane Answers to Complex Questions: Theory of Linear Models , 2003, Technometrics.

[43]  Silvia Ferrari,et al.  Information-Driven Search Strategies in the Board Game of CLUE $^{\circit{R}}$ , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[44]  R. Potthoff,et al.  A generalized multivariate analysis of variance model useful especially for growth curve problems , 1964 .

[45]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[46]  Kenneth J. Hintz,et al.  A measure of the information gain attributable to cueing , 1991, IEEE Trans. Syst. Man Cybern..