Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module

[1]  Guixue Wang,et al.  Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury , 2019, Nature Neuroscience.

[2]  H. D. de Vries,et al.  Molecular alterations of the blood-brain barrier under inflammatory conditions: The role of endothelial to mesenchymal transition. , 2016, Biochimica et biophysica acta.

[3]  J. Raber,et al.  Early Gelatinase Activity Is Not a Determinant of Long-Term Recovery after Traumatic Brain Injury in the Immature Mouse , 2015, PloS one.

[4]  N. Sousa,et al.  From the periphery to the brain: Lipocalin-2, a friend or foe? , 2015, Progress in Neurobiology.

[5]  Ruikang K. Wang,et al.  Impaired Leptomeningeal Collateral Flow Contributes to the Poor Outcome following Experimental Stroke in the Type 2 Diabetic Mice , 2015, The Journal of Neuroscience.

[6]  J. Nathans,et al.  Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. , 2014, Developmental cell.

[7]  Alex A. Pollen,et al.  Radial glia require PDGFD/PDGFRß signaling in human but not mouse neocortex , 2014, Nature.

[8]  J. Nathans,et al.  Canonical WNT signaling components in vascular development and barrier formation. , 2014, The Journal of clinical investigation.

[9]  Emiri T. Mandeville,et al.  Neuronal Production of Lipocalin-2 as a Help-Me Signal for Glial Activation , 2014, Stroke.

[10]  J. Kopecka,et al.  The Cross-Talk between Canonical and Non-Canonical Wnt-Dependent Pathways Regulates P-Glycoprotein Expression in Human Blood–Brain Barrier Cells , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  Ruikang K. Wang,et al.  Conditional Ablation of Neuroprogenitor Cells in Adult Mice Impedes Recovery of Poststroke Cognitive Function and Reduces Synaptic Connectivity in the Perforant Pathway , 2013, The Journal of Neuroscience.

[12]  K. Blomgren,et al.  Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species , 2013, Progress in Neurobiology.

[13]  Hyo Jun Kwon,et al.  Radial Glial Neural Progenitors Regulate Nascent Brain Vascular Network Stabilization Via Inhibition of Wnt Signaling , 2013, PLoS biology.

[14]  J. Nathans,et al.  Norrin/Frizzled4 Signaling in Retinal Vascular Development and Blood Brain Barrier Plasticity , 2012, Cell.

[15]  R. Daneman,et al.  The blood–brain barrier in health and disease , 2012, Annals of neurology.

[16]  Bo Bai,et al.  Neuroprotection of apelin and its signaling pathway , 2012, Peptides.

[17]  Bengt R. Johansson,et al.  Pericytes regulate the blood–brain barrier , 2010, Nature.

[18]  B. Barres,et al.  Pericytes are required for blood–brain barrier integrity during embryogenesis , 2010, Nature.

[19]  B. Barres,et al.  The Mouse Blood-Brain Barrier Transcriptome: A New Resource for Understanding the Development and Function of Brain Endothelial Cells , 2010, PloS one.

[20]  G. Conductier,et al.  The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases , 2010, Journal of Neuroimmunology.

[21]  P. Barber,et al.  Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke , 2010, BMC Neuroscience.

[22]  S. Jalkanen,et al.  The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. , 2009, Blood.

[23]  Calvin J Kuo,et al.  Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis , 2009, Proceedings of the National Academy of Sciences.

[24]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[25]  Andrew P. McMahon,et al.  Canonical Wnt Signaling Regulates Organ-Specific Assembly and Differentiation of CNS Vasculature , 2008, Science.

[26]  K. Plate,et al.  Wnt/β-catenin signaling controls development of the blood–brain barrier , 2008, The Journal of cell biology.

[27]  S. Horvath,et al.  Functional organization of the transcriptome in human brain , 2008, Nature Neuroscience.

[28]  B. Zlokovic The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders , 2008, Neuron.

[29]  B. Engelhardt,et al.  E- and P-Selectin Are Not Required for the Development of Experimental Autoimmune Encephalomyelitis in C57BL/6 and SJL Mice1 , 2007, The Journal of Immunology.

[30]  C. Svendsen,et al.  Differentiating embryonic neural progenitor cells induce blood–brain barrier properties , 2007, Journal of neurochemistry.

[31]  D. Shima,et al.  An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis , 2006, Proceedings of the National Academy of Sciences.

[32]  B. Engelhardt,et al.  T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. , 2003, Blood.

[33]  K. Ley The role of selectins in inflammation and disease. , 2003, Trends in molecular medicine.

[34]  Shishir Shishodia,et al.  The role of TNF and its family members in inflammation and cancer: lessons from gene deletion. , 2002, Current drug targets. Inflammation and allergy.

[35]  S. Love,et al.  Expression of P‐selectin and intercellular adhesion molecule‐1 in human brain after focal infarction or cardiac arrest , 2001, Neuropathology and applied neurobiology.

[36]  J. Mocco,et al.  Postischemic Cerebrovascular E-Selectin Expression Mediates Tissue Injury in Murine Stroke , 2000, Stroke.

[37]  M. Gerritsen,et al.  Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. , 1997, Journal of immunology.

[38]  G. D. del Zoppo,et al.  P‐Selectin and Intercellular Adhesion Molecule‐1 Expression After Focal Brain Ischemia and Reperfusion , 1994, Stroke.

[39]  T. Mayadas,et al.  Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice , 1993, Cell.

[40]  E. Thompson,et al.  Increased levels of circulating ICAM-1 in serum and cerebrospinal fluid of patients with active multiple sclerosis. Correlation with TNF-α and blood-brain barrier damage , 1993, Journal of Neuroimmunology.

[41]  R. Rothlein,et al.  Monoclonal Antibody to the ICAM-1 Adhesion Site Reduces Neurological Damage in a Rabbit Cerebral Embolism Stroke Model , 1993, Experimental Neurology.

[42]  L. Rubin,et al.  A cell culture model of the blood-brain barrier , 1991, The Journal of cell biology.

[43]  R. Janzer,et al.  Astrocytes induce blood–brain barrier properties in endothelial cells , 1987, Nature.

[44]  M. Wiley,et al.  Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail--chick transplantation chimeras. , 1981, Developmental biology.

[45]  K. Walter,et al.  Plasmalemmal Vesicle Associated Protein-1 ( PV-1 ) is a marker of blood-brain barrier disruption in rodent models , 2008 .

[46]  L. Rubin,et al.  The cell biology of the blood-brain barrier. , 1999, Annual review of neuroscience.

[47]  E. Connolly,et al.  Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. , 1996, The Journal of clinical investigation.