Visualizing shape transformation between chimpanzee and human braincases

The quantitative comparison of the form of the braincase is a central issue in paleoanthropology (i.e., the study of human evolution based on fossil evidence). The major difficulty is that there are only few locations defining biological correspondence between individual braincases. In this paper, we use mesh parameterization techniques to tackle this problem. We propose a method to conformally parameterize the genus-0 surface of the braincase on the sphere and to calibrate the parameterization to match biological constraints. The resulting consistent parameterization gives detailed information about shape differences between the braincase of human and chimp. This opens up new perspectives for the quantitative comparison of “featureless” biological structures.

[1]  M. Miller,et al.  Landmark Matching via Large Deformation Diffeomorphisms on the Sphere , 2004 .

[2]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[3]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[4]  J. Gower Generalized procrustes analysis , 1975 .

[5]  Hugues Hoppe,et al.  Consistent Spherical Parameterization , 2005, International Conference on Computational Science.

[6]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[7]  Alla Sheffer,et al.  Practical spherical embedding of manifold triangle meshes , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[8]  Marc Alexa,et al.  Merging polyhedral shapes with scattered features , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[9]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[10]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[11]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[12]  F. Bookstein,et al.  Semilandmarks in Three Dimensions , 2005 .

[13]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[14]  F. Bookstein Landmark methods for forms without landmarks , 1996 .

[15]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[16]  Mads Nielsen,et al.  Non-rigid registration by geometry-constrained diffusion , 1999, Medical Image Anal..

[17]  Lok Ming Lui,et al.  Optimization of Brain Conformal Mapping with Landmarks , 2005, MICCAI.

[18]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[19]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[21]  D'arcy W. Thompson On growth and form i , 1943 .

[22]  Jing Hua,et al.  An Approach for Intersubject Analysis of 3D Brain Images Based on Conformal Geometry , 2006, 2006 International Conference on Image Processing.

[23]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[24]  Vladislav Kraevoy,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, SIGGRAPH 2004.

[25]  C. Zollikofer,et al.  Visualizing patterns of craniofacial shape variation in Homo sapiens , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..