Next-generation sequencing of patients with congenital anosmia

[1]  D. Lancet,et al.  A role for TENM1 mutations in congenital general anosmia , 2016, Clinical genetics.

[2]  D. Lancet,et al.  VarElect: the phenotype-based variation prioritizer of the GeneCards Suite , 2016, BMC Genomics.

[3]  V. Willour,et al.  Exome Sequencing of Familial Bipolar Disorder. , 2016, JAMA psychiatry.

[4]  Soo-Hyun Kim Congenital Hypogonadotropic Hypogonadism and Kallmann Syndrome: Past, Present, and Future , 2015, Endocrinology and metabolism.

[5]  M. Maghnie,et al.  Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism—pathogenesis, diagnosis and treatment , 2015, Nature Reviews Endocrinology.

[6]  T. Hummel,et al.  The first mutation in CNGA2 in two brothers with anosmia , 2015, Clinical genetics.

[7]  Dalong Zhu,et al.  Mutation analyses in pedigrees and sporadic cases of ethnic Han Chinese Kallmann syndrome patients , 2015, Experimental biology and medicine.

[8]  J. Hardelin,et al.  The prevalence of CHD7 missense versus truncating mutations is higher in patients with Kallmann syndrome than in typical CHARGE patients. , 2014, The Journal of clinical endocrinology and metabolism.

[9]  E. Boerwinkle,et al.  dbNSFP v2.0: A Database of Human Non‐synonymous SNVs and Their Functional Predictions and Annotations , 2013, Human mutation.

[10]  D. Goldstein,et al.  Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes , 2013, PLoS genetics.

[11]  L. Layman Clinical genetic testing for Kallmann syndrome. , 2013, The Journal of clinical endocrinology and metabolism.

[12]  Y. Gilad,et al.  General Olfactory Sensitivity Database (GOSdb): Candidate Genes and their Genomic Variations , 2013, Human mutation.

[13]  O. Laccourreye,et al.  PROKR2 and PROK2 mutations cause isolated congenital anosmia without gonadotropic deficiency. , 2012, European journal of endocrinology.

[14]  K. Shianna,et al.  Using ERDS to infer copy-number variants in high-coverage genomes. , 2012, American journal of human genetics.

[15]  J. Hardelin,et al.  SEMA3A, a Gene Involved in Axonal Pathfinding, Is Mutated in Patients with Kallmann Syndrome , 2012, PLoS genetics.

[16]  Bradley P. Coe,et al.  Copy number variation detection and genotyping from exome sequence data , 2012, Genome research.

[17]  Jacques Young,et al.  SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development. , 2012, Human reproduction.

[18]  N. Tommerup,et al.  Isolated and syndromic forms of congenital anosmia , 2012, Clinical genetics.

[19]  Hyung-Goo Kim,et al.  The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. , 2011, Fertility and sterility.

[20]  R. Quinton,et al.  Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory , 2011, Trends in Endocrinology & Metabolism.

[21]  F. Zufall,et al.  Loss-of-function mutations in sodium channel Nav1.7 cause anosmia , 2011, Nature.

[22]  S. Bale,et al.  Mutations in the CHD7 gene: the experience of a commercial laboratory. , 2010, Genetic testing and molecular biomarkers.

[23]  Josyf Mychaleckyj,et al.  Robust relationship inference in genome-wide association studies , 2010, Bioinform..

[24]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[25]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[26]  Philippe Rombaux,et al.  Imaging the olfactory tract (cranial nerve #1). , 2010, European journal of radiology.

[27]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[28]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[29]  L. Hoefsloot,et al.  CHD7 mutations in patients initially diagnosed with Kallmann syndrome – the clinical overlap with CHARGE syndrome , 2009, Clinical genetics.

[30]  J. Hardelin,et al.  The Complex Genetics of Kallmann Syndrome: KAL1, FGFR1, FGF8, PROKR2, PROK2, et al. , 2008, Sexual Development.

[31]  Paul M. Jenkins,et al.  Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons , 2007, Proceedings of the National Academy of Sciences.

[32]  K. Huoponen,et al.  Molecular analysis of the CHD7 gene in CHARGE syndrome: identification of 22 novel mutations and evidence for a low contribution of large CHD7 deletions , 2007, Genetics in Medicine.

[33]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[34]  Shaun K Olsen,et al.  Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. , 2007, The Journal of clinical investigation.

[35]  K. Devriendt,et al.  Novel FGFR1 sequence variants in Kallmann syndrome, and genetic evidence that the FGFR1c isoform is required in olfactory bulb and palate morphogenesis , 2007, Human mutation.

[36]  M. de Castro,et al.  Novel fibroblast growth factor receptor 1 mutations in patients with congenital hypogonadotropic hypogonadism with and without anosmia. , 2006, The Journal of clinical endocrinology and metabolism.

[37]  C. Petit,et al.  Kallmann Syndrome: Mutations in the Genes Encoding Prokineticin-2 and Prokineticin Receptor-2 , 2006, PLoS genetics.

[38]  E. Fliers,et al.  Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes , 2006, Molecular and Cellular Endocrinology.

[39]  Bethan E. Hoskins,et al.  Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse , 2004, Nature Genetics.

[40]  N. Niikawa,et al.  Isolated congenital anosmia locus maps to 18p11.23-q12.2 , 2004, Journal of Medical Genetics.

[41]  F. Speleman,et al.  Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome , 2003, Nature Genetics.

[42]  Scott T. Wong,et al.  Disruption of the Type III Adenylyl Cyclase Gene Leads to Peripheral and Behavioral Anosmia in Transgenic Mice , 2000, Neuron.

[43]  R. Axel,et al.  Mice Deficient in Golf Are Anosmic , 1998, Neuron.

[44]  L. Holmes,et al.  The genetic and clinical heterogeneity of gonadotropin-releasing hormone deficiency in the human. , 1996, The Journal of clinical endocrinology and metabolism.

[45]  J. Ngai,et al.  General Anosmia Caused by a Targeted Disruption of the Mouse Olfactory Cyclic Nucleotide–Gated Cation Channel , 1996, Neuron.

[46]  J. C. Davis,et al.  Identical twins discordant for Kallmann's syndrome. , 1990, Journal of medical genetics.

[47]  H. Petit,et al.  Clinical and biochemical heterogeneity in conditions with phytanic acid accumulation , 1987, Journal of the Neurological Sciences.

[48]  Jean-Pierre Fryns,et al.  Three cases of two unrelated families with a microduplication 22q11.2: developmental skull defects and phenotype variability , 2011 .

[49]  P. Rombaux,et al.  How to measure olfactory bulb volume and olfactory sulcus depth? , 2009, B-ENT.

[50]  J. Hardelin,et al.  Kallmann syndrome , 2009, European Journal of Human Genetics.

[51]  J. Hardelin,et al.  The Complex Genetics of Kallmann Syndrome : KAL 1 , FGFR 1 , FGF 8 , PROKR 2 , PROK , 2008 .

[52]  D. Lancet,et al.  Mutations in olfactory signal transduction genes are not a major cause of human congenital general anosmia. , 2007, Chemical senses.

[53]  R. Axel,et al.  Mice deficient in G(olf) are anosmic. , 1998, Neuron.