Inhibition of Poly(ADP-ribose) Polymerase-1 Enhances Gene Expression of Selected Sirtuins and APP Cleaving Enzymes in Amyloid Beta Cytotoxicity

[1]  J. Strosznajder,et al.  Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders , 2016, Neurochemical Research.

[2]  R. Strosznajder,et al.  Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. , 2016, Folia neuropathologica.

[3]  D. Selkoe,et al.  A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration , 2016, Nature Reviews Neuroscience.

[4]  L. Guarente,et al.  The multifaceted functions of sirtuins in cancer , 2015, Nature Reviews Cancer.

[5]  Sebastian Brandner,et al.  Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy , 2015, Nature.

[6]  J. Strosznajder,et al.  The Molecular Mechanism of Amyloid β42 Peptide Toxicity: The Role of Sphingosine Kinase-1 and Mitochondrial Sirtuins , 2015, PloS one.

[7]  W. Lukiw,et al.  Beta-Amyloid Precursor Protein (βAPP) Processing in Alzheimer’s Disease (AD) and Age-Related Macular Degeneration (AMD) , 2015, Molecular Neurobiology.

[8]  J. Sadoshima,et al.  The role of sirtuins in cardiac disease. , 2015, American journal of physiology. Heart and circulatory physiology.

[9]  Jianyuan Luo,et al.  SIRT5, functions in cellular metabolism with a multiple enzymatic activities , 2015, Science China Life Sciences.

[10]  Matthew J. Rardin,et al.  SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target. , 2015, Molecular cell.

[11]  R. Berlinguer-Palmini,et al.  Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I–Mutant Fibroblasts , 2015, Molecular Pharmacology.

[12]  K. Blennow,et al.  APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons , 2015, Cell reports.

[13]  Jing Fan,et al.  SIRT3 mediates multi-tissue coupling for metabolic fuel switching. , 2015, Cell metabolism.

[14]  L. Mosca,et al.  PARP-1 involvement in neurodegeneration: A focus on Alzheimer’s and Parkinson’s diseases , 2015, Mechanisms of Ageing and Development.

[15]  B. Reina-San-Martin,et al.  Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. , 2014, Experimental cell research.

[16]  S. Mitra,et al.  Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function , 2014, Nucleic acids research.

[17]  E. Koylu,et al.  Ex vivo protective effects of nicotinamide and 3‐aminobenzamide on rat synaptosomes treated with Aβ(1–42) , 2014, Cell biochemistry and function.

[18]  O. Ghribi,et al.  Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. , 2014, Biochimica et biophysica acta.

[19]  K. Iqbal,et al.  A NOVEL PHARMACOLOGIC THERAPEUTIC APPROACH TO ALZHEIMER DISEASE AND COGNITIVE AGING , 2014, Alzheimer's & Dementia.

[20]  J. Uusimaa,et al.  SIRT5 is under the control of PGC‐1α and AMPK and is involved in regulation of mitochondrial energy metabolism , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  O. Ghribi,et al.  LEPTIN ATTENUATES BACE1 EXPRESSION AND AMYLOID-B GENESIS VIA THE ACTIVATION OF SIRT1 SIGNALING PATHWAY , 2014, Alzheimer's & Dementia.

[22]  Bassem A. Hassan,et al.  Amyloid precursor protein and neural development , 2014, Development.

[23]  D. Bani,et al.  PARP Inhibition Delays Progression of Mitochondrial Encephalopathy in Mice , 2014, Neurotherapeutics.

[24]  Evan G. Williams,et al.  Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. , 2014, Cell metabolism.

[25]  E. Schon,et al.  NAD+-Dependent Activation of Sirt1 Corrects the Phenotype in a Mouse Model of Mitochondrial Disease , 2014, Cell metabolism.

[26]  R. Vassar,et al.  Targeting the β secretase BACE1 for Alzheimer's disease therapy , 2014, The Lancet Neurology.

[27]  N. Andreasen,et al.  Pathways to Alzheimer's disease , 2014, Journal of internal medicine.

[28]  M. Gąssowska,et al.  Sphingosine Kinases/Sphingosine-1-Phosphate and Death Signalling in APP-Transfected Cells , 2014, Neurochemical Research.

[29]  K. Kohn,et al.  SIRT1/PARP1 crosstalk: connecting DNA damage and metabolism , 2013, Genome Integrity.

[30]  W. Kraus,et al.  PARP-1 and gene regulation: progress and puzzles. , 2013, Molecular aspects of medicine.

[31]  X. Chen,et al.  SIRT5 desuccinylates and activates SOD1 to eliminate ROS. , 2013, Biochemical and biophysical research communications.

[32]  E. Verdin,et al.  SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK , 2013, Aging.

[33]  D. Bredesen,et al.  Neuroprotective Sirtuin ratio reversed by ApoE4 , 2013, Proceedings of the National Academy of Sciences.

[34]  I. Tempera,et al.  PARP-1 Modulates Amyloid Beta Peptide-Induced Neuronal Damage , 2013, PloS one.

[35]  D. Butterfield,et al.  Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. , 2013, Antioxidants & redox signaling.

[36]  E. Bossy‐Wetzel,et al.  Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration , 2013, Front. Aging Neurosci..

[37]  J. Strosznajder,et al.  Docosahexaenoic acid and tetracyclines as promising neuroprotective compounds with poly(ADP-ribose) polymerase inhibitory activities for oxidative/genotoxic stress treatment , 2013, Neurochemistry International.

[38]  A. Adamczyk,et al.  Expression and activity of PARP family members in the hippocampus during systemic inflammation: Their role in the regulation of prooxidative genes , 2013, Neurochemistry International.

[39]  José Marco-Contelles,et al.  Recent advances in the multitarget‐directed ligands approach for the treatment of Alzheimer's disease , 2013, Medicinal research reviews.

[40]  U. Baxa,et al.  A ketogenic diet increases brown adipose tissue mitochondrial proteins and UCP1 levels in mice , 2013, IUBMB life.

[41]  J. Götz,et al.  Insights into mitochondrial dysfunction: aging, amyloid-β, and tau-A deleterious trio. , 2012, Antioxidants & redox signaling.

[42]  T. Stedeford,et al.  Natural Inhibitors of Poly(ADP-ribose) Polymerase-1 , 2012, Molecular Neurobiology.

[43]  A. Adamczyk,et al.  Poly(ADP-ribose) Polymerase-1 in Amyloid Beta Toxicity and Alzheimer's Disease , 2012, Molecular Neurobiology.

[44]  S. Lesné,et al.  Soluble Aβ oligomer production and toxicity , 2012, Journal of neurochemistry.

[45]  Johan Auwerx,et al.  Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase , 2011, Science.

[46]  N. Curtin,et al.  The role of PARP in DNA repair and its therapeutic exploitation , 2011, British Journal of Cancer.

[47]  A. Seluanov,et al.  SIRT6 Promotes DNA Repair Under Stress by Activating PARP1 , 2011, Science.

[48]  M. Duchen,et al.  Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. , 2011, Brain : a journal of neurology.

[49]  A. Lapucci,et al.  Poly(ADP-ribose) Polymerase-1 Is a Nuclear Epigenetic Regulator of Mitochondrial DNA Repair and Transcription , 2011, Molecular Pharmacology.

[50]  Hui Zheng,et al.  Biology and pathophysiology of the amyloid precursor protein , 2011, Molecular Neurodegeneration.

[51]  J. Auwerx,et al.  PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. , 2011, Cell metabolism.

[52]  J. Auwerx,et al.  PARP-2 regulates SIRT1 expression and whole-body energy expenditure. , 2011, Cell metabolism.

[53]  P. Reddy,et al.  Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons. , 2011, Biochimica et biophysica acta.

[54]  F. Dantzer,et al.  PARP-3, a DNA-dependent PARP with emerging roles in double-strand break repair and mitotic progression , 2011, Cell cycle.

[55]  Lucia Pagani,et al.  Amyloid-Beta Interaction with Mitochondria , 2011, International journal of Alzheimer's disease.

[56]  Hyoung-Gon Lee,et al.  The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations , 2011, The Lancet Neurology.

[57]  S. Voelter-Mahlknecht,et al.  Genomic organization and localization of the NAD-dependent histone deacetylase gene sirtuin 3 (Sirt3) in the mouse. , 2011, International Journal of Oncology.

[58]  V. Schreiber,et al.  Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression , 2011, Proceedings of the National Academy of Sciences.

[59]  B. Winblad,et al.  Mitochondrial γ‐secretase participates in the metabolism of mitochondria‐associated amyloid precursor protein , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[60]  David M. Taylor,et al.  Novel 7‐secretase inhibitors uncover a common nucleotide‐binding site in JAK3, SIRT2, and PS1 , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[61]  J. Strosznajder,et al.  Poly(ADP-Ribose) Metabolism in Brain and Its Role in Ischemia Pathology , 2010, Molecular Neurobiology.

[62]  J. Auwerx,et al.  The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. , 2010, Endocrine reviews.

[63]  Venkataraman Thanabal,et al.  SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1♦ , 2010, The Journal of Biological Chemistry.

[64]  B. Gajkowska,et al.  Alzheimer's disease genetic mutation evokes ultrastructural alterations: correlation to an intracellular Abeta deposition and the level of GSK-3beta-P(Y216) phosphorylated form. , 2009, Neurotoxicology.

[65]  Kristina D. Micheva,et al.  Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques , 2009, Proceedings of the National Academy of Sciences.

[66]  Richard I. Morimoto,et al.  Stress-Inducible Regulation of Heat Shock Factor 1 by the Deacetylase SIRT1 , 2009, Science.

[67]  A. Adamczyk,et al.  α-Synuclein enhances secretion and toxicity of amyloid beta peptides in PC12 cells , 2008, Neurochemistry International.

[68]  M. Fändrich,et al.  Oligomeric and fibrillar species of β-amyloid (Aβ42) both impair mitochondrial function in P301L tau transgenic mice , 2008, Journal of Molecular Medicine.

[69]  H. Cai,et al.  BACE1, a Major Determinant of Selective Vulnerability of the Brain to Amyloid-β Amyloidogenesis, is Essential for Cognitive, Emotional, and Synaptic Functions , 2005, The Journal of Neuroscience.

[70]  M. Walski,et al.  Inhibition of poly(ADP-ribose) polymerase activity protects hippocampal cells against morphological and ultrastructural alteration evoked by ischemia-reperfusion injury. , 2005, Folia neuropathologica.

[71]  Q. Tong,et al.  SIRT3, a Mitochondrial Sirtuin Deacetylase, Regulates Mitochondrial Function and Thermogenesis in Brown Adipocytes* , 2005, Journal of Biological Chemistry.

[72]  A. Adamczyk,et al.  Non A beta component of Alzheimer's disease amyloid and amyloid beta peptides evoked poly(ADP-ribose) polymerase-dependent release of apoptosis-inducing factor from rat brain mitochondria. , 2005, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.

[73]  C. Haass,et al.  Amyloid β-induced Changes in Nitric Oxide Production and Mitochondrial Activity Lead to Apoptosis* , 2004, Journal of Biological Chemistry.

[74]  G. de Murcia,et al.  The PARP superfamily , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[75]  N. Hooper,et al.  ADAMs family members as amyloid precursor protein α‐secretases , 2003 .

[76]  M. Robin,et al.  Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells , 2003, The Journal of cell biology.

[77]  G. Krafft,et al.  In Vitro Characterization of Conditions for Amyloid-β Peptide Oligomerization and Fibrillogenesis* , 2003, The Journal of Biological Chemistry.

[78]  W. K. Cullen,et al.  Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo , 2002, Nature.

[79]  C. Haass,et al.  Elevated vulnerability to oxidative stress‐induced cell death and activation of caspase‐3 by the Swedish amyloid precursor protein mutation , 2001, Journal of neuroscience research.

[80]  S. Snyder,et al.  Poly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotransmission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[81]  D. Selkoe,et al.  Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity , 1999, Nature.

[82]  S. Love,et al.  Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. , 1999, Brain : a journal of neurology.

[83]  D. Selkoe,et al.  Amyloid protein and Alzheimer's disease. , 1991, Scientific American.

[84]  D. Salmon,et al.  Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment , 1991, Annals of neurology.

[85]  A. Fuso,et al.  Bioenergetic Impairment in Animal and Cellular Models of Alzheimer's Disease: PARP-1 Inhibition Rescues Metabolic Dysfunctions. , 2016, Journal of Alzheimer's disease : JAD.

[86]  E. Kosenko,et al.  Critical analysis of Alzheimer's amyloid-beta toxicity to mitochondria. , 2015, Frontiers in bioscience.

[87]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[88]  A. Eckert,et al.  Amyloid beta enhances cytosolic phospholipase A2 level and arachidonic acid release via nitric oxide in APP-transfected PC12 cells. , 2007, Acta biochimica Polonica.

[89]  D. Selkoe,et al.  Natural oligomers of the amyloid-β protein specifically disrupt cognitive function , 2005, Nature Neuroscience.

[90]  H. Cai,et al.  BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. , 2001, Nature neuroscience.

[91]  J. Węsierska‐Gądek,et al.  Poly(ADP-ribose) polymerase-1 regulates the stability of the wild-type p53 protein. , 2001, Cellular & molecular biology letters.

[92]  J. Strosznajder,et al.  Age-related alteration of poly(ADP-ribose) polymerase activity in different parts of the brain. , 2000, Acta biochimica Polonica.