An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod

Abstract The paper presents a novel formulation for the isogeometric analysis of assemblies of Kirchhoff–Love space rod elements, introducing a multi-patch implicit G 1 formulation, so that an automatic non-singular stiffness operator is obtained without the need of adding continuity conditions. The goal is achieved using a polar decomposition of the deformation of the first and last segments of the control polygon, that allows to introduce directly the end rotations as degrees of freedom. Both parametric and geometric continuity can be obtained in this way. We use Bezier and B-spline interpolations and we show that they are able to attain very good accuracy for developing a 3D exact curve element with geometric torsion (pre-twisted rod). In the paper the performance of the multi-patch elements is examined comparing the rates of convergence of the L 2 error norm for the multi-patch and single-patch formulations. It is shown that the rate of convergence remains the same, although in certain cases the accuracy is lower for the multi-patch solutions.

[1]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[2]  Alain Combescure,et al.  Locking free isogeometric formulations of curved thick beams , 2012 .

[3]  Giuseppe Piccardo,et al.  On the effect of twist angle on nonlinear galloping of suspended cables , 2009 .

[4]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[5]  Jose Manuel Valverde,et al.  Invariant Hermitian finite elements for thin Kirchhoff rods. I: The linear plane case ☆ , 2012 .

[6]  G. Ventura,et al.  An explicit formulation of the Green's operator for general one-dimensional structures , 2002 .

[7]  Patrizio Neff,et al.  A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Existence of minimizers for zero Cosserat couple modulus , 2004 .

[8]  Joel Langer,et al.  Lagrangian Aspects of the Kirchhoff Elastic Rod , 1996, SIAM Rev..

[9]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[10]  Zafer Gürdal,et al.  Isogeometric sizing and shape optimisation of beam structures , 2009 .

[11]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[12]  C. Gontier,et al.  A large displacement analysis of a beam using a CAD geometric definition , 1995 .

[13]  V. Jurdjevic NON-EUCLIDEAN ELASTICA , 1995 .

[14]  Jia Lu,et al.  Cylindrical element: Isogeometric model of continuum rod , 2011 .

[15]  Jose Manuel Valverde,et al.  Invariant Hermitian finite elements for thin Kirchhoff rods. II: The linear three-dimensional case , 2012 .

[16]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[17]  M. Touratier,et al.  Shear flexible curved spline beam element for static analysis , 1999 .

[18]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[19]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[20]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[21]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[22]  Manfred Bischoff,et al.  Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .

[23]  Alessandro Reali,et al.  AN ISO GEOMETRIC ANALYSIS APPROACH FOR THE STUDY OF STRUCTURAL VIBRATIONS , 2006 .

[24]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[25]  Victor A. Eremeyev,et al.  Deformation analysis of functionally graded beams by the direct approach , 2012 .

[26]  Brian A. Barsky,et al.  Rational continuity: parametric, geometric, and Frenet frame continuity of rational curves , 1989, TOGS.

[27]  Francesco dell’Isola,et al.  Modelling the onset of shear boundary layers in fibrous composite reinforcements by second gradient theory , 2013 .

[28]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[29]  Eitan Grinspun,et al.  Discrete elastic rods , 2008, ACM Trans. Graph..

[30]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[31]  M. Cuomo,et al.  AN UNLOCKED IMPLICIT G1 CONTINUITY MULTI PATCH B-SPLINE INTERPOLATION FOR THE ANALYSIS OF 3D KIRCHHOFF LOVE ROD ELEMENTS , 2013 .

[32]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[33]  Tony DeRose,et al.  Geometric continuity of parametric curves: three equivalent characterizations , 1989, IEEE Computer Graphics and Applications.

[34]  A. Ibrahimbegovic On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional curved beam elements , 1995 .

[35]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[36]  E. Ramm,et al.  Structural optimization and form finding of light weight structures , 2001 .

[37]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[38]  Zafer Gürdal,et al.  Isogeometric sizing and shape optimisation of beam structures , 2009 .

[39]  A. Luo On a nonlinear theory of thin rods , 2010 .

[40]  Paul Steinmann,et al.  Isogeometric analysis of 2D gradient elasticity , 2011 .

[41]  M. Cuomo,et al.  Multi-Patch Isogeometric Analysis of Space Rods , 2012 .

[42]  R. Radovitzky,et al.  A new discontinuous Galerkin method for Kirchhoff–Love shells , 2008 .