Navigarea roboţilor mobili autonomi intr-un mediu dinamic, nestructurat si non-episodic este constrânsă de imprecizia, incertitudinea, inexactitatea, complexitatea si imprevizibilitatea caracteristică senzorilor si controlerelor roboţilor. In această lucrare, sunt investigate mai multe tehnici de navigaţie pentru robotul mobil Kephera intr-un mediu total necunoscut, utilizând tehnica inteligentă fuzzy. Este dezvoltat un controler logic fuzzy (FCL) ce folosește diferite tipuri de funcţii de apartenenţă pentru a naviga robotul. Sunt investigate efectele diferitelor tipuri de funcţii membru in ceea ce privește performanța comportamentului robotului in sarcini cum ar fi evitarea obstacolelor, urmărirea unui drum/urmărirea peretelui, explorare si mersul la ţintă. Tehnica Gaussiană a funcţiei membru se dovedeste a fi cea mai eficientă pentru navigarea robotului mobil. Seamless navigation of autonomous mobile robots in an unstructured, nonepisodic and dynamic environment is constrain by imprecision, uncertainty, unreliability, complexity and unpredictability issues that characterize robots’ sensors and its controller. In this paper, we investigate navigation techniques for Kephera mobile robot using fuzzy logic intelligent technique. We develop Fuzzy logic controller (FCL) using different membership function types to navigate the robot. We investigate the effects of membership functions types on the performance of behaviours such as obstacle avoidance, path tracking/wall following, exploration, and target reaching. Gaussian membership function technique is found to be most efficient for mobile robot navigation.
[1]
Chia-Ju Wu,et al.
Fuzzy Motion Planning of Mobile Robots in Unknown Environments
,
2003,
J. Intell. Robotic Syst..
[2]
Enrique H. Ruspini.
Fuzzy logic-based planning and reactive control of autonomous mobile robots
,
1995,
Proceedings of 1995 IEEE International Conference on Fuzzy Systems..
[3]
Andreas C. Nearchou,et al.
Adaptive navigation of autonomous vehicles using evolutionary algorithms
,
1999,
Artif. Intell. Eng..
[4]
Anup Kumar Panda,et al.
Fuzzy logic techniques for navigation of several mobile robots
,
2009,
Appl. Soft Comput..
[5]
Murali C. Krishna,et al.
Fuzzy Logic Reasoning to Control Mobile Robot on Pre-defined Strip Path
,
2008
.
[6]
K. B. Kim,et al.
Fuzzy system modeling by fuzzy partition and GA hybrid schemes
,
1997,
Fuzzy Sets Syst..
[7]
Yoshiki Uchikawa,et al.
A Fuzzy Classifier System for evolutionary learning of robot behaviors
,
1998
.
[8]
F. G. Pin,et al.
Driving a car using reflexive fuzzy behaviors
,
1993,
[Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.
[9]
Xiao Peng,et al.
Fuzzy behavior-based control of mobile robots
,
2004,
IEEE Transactions on Fuzzy Systems.
[10]
Francesco Mondada,et al.
The Development of Khepera
,
1999
.
[11]
Liliane Peters,et al.
A fuzzy system for indoor mobile robot navigation
,
1995,
Proceedings of 1995 IEEE International Conference on Fuzzy Systems..