The radius spectrum of solid grains settling in gaseous giant protoplanets

Growth of grains having different initial sizes (10−3 cm ≤ r0 ≤ 1 cm) has been investigated by coagulation processes inside gas giant protoplanets, formed by disk instability, in the mass range 0.3 to 10 Jovian masses. In doing so, we have determined distribution of thermodynamic variables inside the protoplanets and using the results we have determined growth of the grains having assumed initial sizes. Regarding the transference of heat inside the protoplanets, we have considered the possible two cases of interest, namely convection and conduction-radiation. The results of our calculation show that growth of the grains depends on protoplanetary masses and on initial states of the protoplanets and eventually all the grains having assumed different initial sizes acquire almost the same distribution in the central regions of respective protoplanets in the respective cases.

[1]  J. Mohr,et al.  XMMU J100750.5+125818: a strong lensing cluster at z = 1.082 , 2010, 1004.0093.

[2]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[3]  D. J. Crampin,et al.  Segregation of material with reference to the formation of the terrestrial planets , 1971 .

[4]  P. Bodenheimer,et al.  Calculations of the evolution of the giant planets , 1980 .

[5]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[6]  I. Williams,et al.  Segregation of the heavy elements in the solar system , 1974 .

[7]  A. Boss Testing Disk Instability Models for Giant Planet Formation , 2007, 0704.1138.

[8]  J. M. Champney,et al.  Particle-Gas Dynamics in the Midplane of a Protoplanetary Nebula , 1993 .

[9]  C. Dullemond,et al.  Gas- and dust evolution in protoplanetary disks , 2010, 1002.0335.

[11]  J. Blum,et al.  Dust agglomeration , 2006 .

[12]  A. Boss Evolution of the Solar Nebula. V. Disk Instabilities with Varied Thermodynamics , 2002 .

[13]  T. Quinn,et al.  Formation of Giant Planets by Fragmentation of Protoplanetary Disks , 2002, Science.

[14]  M. M. Rahman,et al.  Dust grain growth and settling in initial gaseous giant protoplanets , 2012, Earth, Planets and Space.

[15]  G. Paul,et al.  STRUCTURE OF INITIAL PROTOPLANETS , 2008 .

[16]  S. Bhattacharjee,et al.  Gravitational settling time of solid grains in gaseous protoplanets , 2012 .

[17]  Alexander G. G. M. Tielens,et al.  The Physics of Dust Coagulation and the Structure of Dust Aggregates in Space , 1997 .

[18]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[19]  Gour Chandra Paul,et al.  Application of new RKAHeM(4,4) technique to analyze the structure of initial extrasolar giant protoplanets , 2012, Earth Science Informatics.

[20]  Joachim Stadel,et al.  The Evolution of Gravitationally Unstable Protoplanetary Disks: Fragmentation and Possible Giant Planet Formation , 2003, astro-ph/0310771.

[22]  T. Henning,et al.  Particle-Trapping Eddies in Protoplanetary Accretion Disks , 1997 .

[23]  A. Boss Formation of Extrasolar Giant Planets: Core Accretion or Disk Instability? , 1998 .

[24]  C. Dominik,et al.  Resistance to rolling in the adhesive contact of two elastic spheres , 1995 .

[25]  Ravit Helled,et al.  Grain sedimentation in a giant gaseous protoplanet , 2008, 0801.2435.

[26]  S. Weidenschilling Evolution of Grains in a Turbulent Solar Nebula: a Reappraisal , 1984 .

[27]  Ravit Helled,et al.  Core formation in giant gaseous protoplanets , 2008, 0808.2787.

[28]  I. Simpson,et al.  Segregation of the non-volatile compounds in turbulent protoplanets , 1978 .

[29]  A. Cameron,et al.  Structure and evolution of isolated giant gaseous protoplanets , 1979 .

[30]  Aaron C. Boley,et al.  Clumps in the outer disk by disk instability: Why they are initially gas giants and the legacy of disruption , 2009, 0909.4543.

[31]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[32]  S. Weidenschilling,et al.  Dust to planetesimals: Settling and coagulation in the solar nebula , 1980 .

[33]  J. Blum,et al.  Experiments on Sticking, Restructuring, and Fragmentation of Preplanetary Dust Aggregates , 2000 .

[34]  Alexander G. G. M. Tielens,et al.  Resistance to sliding on atomic scales in the adhesive contact of two elastic spheres , 1996 .

[35]  S. Bhattacharjee,et al.  Distribution of thermodynamic variables inside extra-solar protoplanets formed via disk instability , 2013 .

[36]  Peter Bodenheimer,et al.  The effects of metallicity and grain growth and settling on the early evolution of gaseous protoplanets , 2010, 1005.4039.

[37]  Alan P. Boss,et al.  Evolution of the Solar Nebula. IV. Giant Gaseous Protoplanet Formation , 1998 .

[38]  Iwan P. Williams,et al.  Segregation of materials in cosmogony , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  Sergei Nayakshin,et al.  A numerical simulation of a 'Super-Earth' core delivery from ~100 to ~8 au , 2010, 1010.1489.

[40]  B. Dubrulle,et al.  The Dust Subdisk in the Protoplanetary Nebula , 1995 .

[41]  J. Blum,et al.  The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks , 2008 .

[42]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.