Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion

[1]  D. Campion,et al.  Accumulation of insoluble forms of FUS protein correlates with toxicity in Drosophila , 2012, Neurobiology of Aging.

[2]  A. Singleton,et al.  Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer's disease , 2012, Neurobiology of Aging.

[3]  Y. Hirayasu,et al.  Localization of fused in sarcoma (FUS) protein to the post-synaptic density in the brain , 2012, Acta Neuropathologica.

[4]  T. Kawano,et al.  ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism , 2011, Human molecular genetics.

[5]  J. Jia,et al.  Nuclear localization sequence of FUS and induction of stress granules by ALS mutants , 2011, Neurobiology of Aging.

[6]  Olaf Ansorge,et al.  FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. , 2011, Brain : a journal of neurology.

[7]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[8]  M. Mesulam,et al.  Expression of human FUS protein in Drosophila leads to progressive neurodegeneration , 2011, Protein & Cell.

[9]  C. Haass,et al.  TDP-43 and FUS: a nuclear affair , 2011, Trends in Neurosciences.

[10]  Ji Han Kim,et al.  A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. , 2011, Human molecular genetics.

[11]  G. Rouleau,et al.  TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. , 2011, Human molecular genetics.

[12]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[13]  Daniel F Tardiff,et al.  A Yeast Model of FUS/TLS-Dependent Cytotoxicity , 2011, PLoS biology.

[14]  E. Buratti,et al.  TDP-43 Regulates Drosophila Neuromuscular Junctions Growth by Modulating Futsch/MAP1B Levels and Synaptic Microtubules Organization , 2011, PloS one.

[15]  Yong-jian Liu,et al.  FUS Transgenic Rats Develop the Phenotypes of Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration , 2011, PLoS genetics.

[16]  Jane Y. Wu,et al.  Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy , 2011, Protein & Cell.

[17]  B. Spencer‐Dene,et al.  FUS/TLS is a novel mediator of androgen-dependent cell-cycle progression and prostate cancer growth. , 2011, Cancer research.

[18]  D. Ito,et al.  Nuclear transport impairment of amyotrophic lateral sclerosis‐linked mutations in FUS/TLS , 2011, Annals of neurology.

[19]  E. Aquilanti,et al.  Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations , 2010, Nucleic acids research.

[20]  N. Cairns,et al.  Distinct pathological subtypes of FTLD-FUS , 2011, Acta Neuropathologica.

[21]  Robert H. Brown,et al.  Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. , 2010, Human molecular genetics.

[22]  D. Price,et al.  Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice , 2010, Proceedings of the National Academy of Sciences.

[23]  I. Mackenzie,et al.  ALS‐associated fused in sarcoma (FUS) mutations disrupt Transportin‐mediated nuclear import , 2010, The EMBO journal.

[24]  R. Tibbetts,et al.  Amyotrophic Lateral Sclerosis-associated Proteins TDP-43 and FUS/TLS Function in a Common Biochemical Complex to Co-regulate HDAC6 mRNA* , 2010, The Journal of Biological Chemistry.

[25]  L. Petrucelli,et al.  Wild-Type Human TDP-43 Expression Causes TDP-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice , 2010, The Journal of Neuroscience.

[26]  M. Loriot,et al.  Interaction between ABCB1 and professional exposure to organochlorine insecticides in Parkinson disease. , 2010, Archives of neurology.

[27]  E. Mugnaini,et al.  FUS‐immunoreactive inclusions are a common feature in sporadic and non‐SOD1 familial amyotrophic lateral sclerosis , 2010, Annals of neurology.

[28]  R. Petersen,et al.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration , 2010, Acta Neuropathologica.

[29]  R. Bowser,et al.  Transgenic Rat Model of Neurodegeneration Caused by Mutation in the TDP Gene , 2010, PLoS genetics.

[30]  K. Sleegers,et al.  Genetic contribution of FUS to frontotemporal lobar degeneration , 2010, Neurology.

[31]  T. Hortobágyi,et al.  TDP‐43 is consistently co‐localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations , 2009, Neuropathology : official journal of the Japanese Society of Neuropathology.

[32]  J. V. van Swieten,et al.  Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration , 2009, Journal of Neurology.

[33]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[34]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[35]  D. Munoz,et al.  FUS pathology in basophilic inclusion body disease , 2009, Acta Neuropathologica.

[36]  J. Hodges,et al.  Frontotemporal dementia and motor neurone disease: Overlapping clinic-pathological disorders , 2009, Journal of Clinical Neuroscience.

[37]  H. Kretzschmar,et al.  Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease , 2009, Acta Neuropathologica.

[38]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[39]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[40]  Andrea D'Ambrogio,et al.  Structural determinants of the cellular localization and shuttling of TDP-43 , 2008, Journal of Cell Science.

[41]  B. Kalmar,et al.  Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1G93A mouse model of ALS , 2008, Journal of neurochemistry.

[42]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[43]  I. Mackenzie The neuropathology and clinical phenotype of FTD with progranulin mutations , 2007, Acta Neuropathologica.

[44]  Roland G Henry,et al.  Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. , 2007, Archives of neurology.

[45]  N. Cairns,et al.  TDP‐43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations , 2007, Journal of neuropathology and experimental neurology.

[46]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[47]  T. Takumi,et al.  Myosin-Va Facilitates the Accumulation of mRNA/Protein Complex in Dendritic Spines , 2006, Current Biology.

[48]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[49]  Robert H. Brown,et al.  Molecular biology of amyotrophic lateral sclerosis: insights from genetics , 2006, Nature Reviews Neuroscience.

[50]  T. Takumi,et al.  TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines , 2005, Journal of Cell Science.

[51]  S H Appel,et al.  Prevalence and patterns of cognitive impairment in sporadic ALS , 2005, Neurology.

[52]  F. Moreau-Gachelin,et al.  Delocalization of the multifunctional RNA splicing factor TLS/FUS in hippocampal neurones: exclusion from the nucleus and accumulation in dendritic granules and spine heads , 2005, Neuroscience Letters.

[53]  G. Hicks,et al.  The RNA Binding Protein TLS Is Translocated to Dendritic Spines by mGluR5 Activation and Regulates Spine Morphology , 2005, Current Biology.

[54]  E. Friauf,et al.  A subcellular prefractionation protocol for minute amounts of mammalian cell cultures and tissue , 2005, Proteomics.

[55]  J. Cooper,et al.  The Neuronal Adaptor Protein X11α Reduces Aβ Levels in the Brains of Alzheimer's APPswe Tg2576 Transgenic Mice* , 2003, Journal of Biological Chemistry.

[56]  J. Cooper,et al.  The neuronal adaptor protein X11alpha reduces Abeta levels in the brains of Alzheimer's APPswe Tg2576 transgenic mice. , 2003, The Journal of biological chemistry.

[57]  Catherine Lomen-Hoerth,et al.  The overlap of amyotrophic lateral sclerosis and frontotemporal dementia , 2002, Neurology.

[58]  J. Trojanowski,et al.  Update on the Neuropathological Diagnosis of Frontotemporal Dementias , 2001, Journal of neuropathology and experimental neurology.

[59]  Jeffrey D. Rothstein,et al.  From charcot to lou gehrig: deciphering selective motor neuron death in als , 2001, Nature Reviews Neuroscience.

[60]  D. D. de Rooij,et al.  Male sterility and enhanced radiation sensitivity in TLS−/− mice , 2000, The EMBO journal.

[61]  H. Ruley,et al.  Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death , 2000, Nature Genetics.

[62]  D L Price,et al.  A vector for expressing foreign genes in the brains and hearts of transgenic mice. , 1996, Genetic analysis : biomolecular engineering.