Molecular Dynamics Simulations of Adsorption of Organic Compounds at the Clay Mineral/Aqueous Solution Interface

[1]  B. Teppen,et al.  Potential contributions of smectite clays and organic matter to pesticide retention in soils. , 2001, Journal of agricultural and food chemistry.

[2]  Brian J. Teppen,et al.  Molecular dynamics simulations of the adsorption of proteins on clay mineral surfaces , 2000 .

[3]  Ching-Hsing Yu,et al.  Molecular Dynamics Simulations of the Adsorption of Methylene Blue at Clay Mineral Surfaces , 2000 .

[4]  D. Smith Molecular Computer Simulations of the Swelling Properties and Interlayer Structure of Cesium Montmorillonite , 1998 .

[5]  H. Schenk,et al.  Molecular Simulations of Montmorillonite Intercalated with Aluminum Complex Cations. Part II: Intercalation with Al(OH)3-Fragment Polymers , 1998 .

[6]  H. Schenk,et al.  Molecular Simulations of Montmorillonite Intercalated with Aluminum Complex Cations. Part I: Intercalation with [Al13O4(OH)24+x(H2O)12−x](7−x)+ , 1998 .

[7]  G. Sposito,et al.  Monte Carlo and Molecular Dynamics Studies of Interlayer Structure in Li(H2O)3−Smectites , 1998 .

[8]  A. Fitch,et al.  Computational Studies Compared to Electrochemical Measurements of Intercalation of Cationic Compounds in Wyoming Montmorillonite , 1997 .

[9]  G. Sposito,et al.  Monte Carlo and Molecular Dynamics Simulations of Interfacial Structure in Lithium-Montmorillonite Hydrates , 1997 .

[10]  J. Rustad,et al.  Molecular statics calculations for iron oxide and oxyhydroxide minerals: Toward a flexible model of the reactive mineral-water interface , 1996 .

[11]  J. Rustad,et al.  Molecular statics calculations of proton binding to goethite surfaces: A new approach to estimation of stability constants for multisite surface complexation models , 1996 .

[12]  B. Smit,et al.  The Swelling of Clays: Molecular Simulations of the Hydration of Montmorillonite , 1996, Science.

[13]  A. Yamagishi,et al.  Monte Carlo Simulations on Intercalation of Tris(1,10-phenanthroline)metal(II) by Saponite Clay , 1996 .

[14]  Peter V. Coveney,et al.  Monte Carlo Molecular Modeling Studies of Hydrated Li-, Na-, and K-Smectites: Understanding the Role of Potassium as a Clay Swelling Inhibitor , 1995 .

[15]  P. Coveney,et al.  Molecular Modeling of Clay Hydration: A Study of Hysteresis Loops in the Swelling Curves of Sodium Montmorillonites , 1995 .

[16]  C. Catlow,et al.  Chiral Recognition Among Tris(diimine)-Metal Complexes. 4. Atomistic Computer Modeling of a Monolayer of [Ru(bpy)3]2+ Intercalated into a Smectite Clay , 1995 .

[17]  G. Sposito,et al.  Computer Simulation of Interlayer Molecular Structure in Sodium Montmorillonite Hydrates , 1995 .

[18]  Timothy S Bush,et al.  Structures of Quaternary Ru and Sb Oxides by Computer Simulation , 1995 .

[19]  G. Sposito,et al.  Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 1. Methodology , 1995 .

[20]  J. Sauer,et al.  MOLECULAR MECHANICS POTENTIAL FOR SILICA AND ZEOLITE CATALYSTS BASED ON AB INITIO CALCULATIONS 2 , 1995 .

[21]  G. Sposito,et al.  Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 2. Monolayer Hydrates , 1995 .

[22]  J. Rustad,et al.  A molecular dynamics study of solvated orthosilicic acid and orthosilicate anion using parameterized potentials , 1995 .

[23]  C. Catlow,et al.  STRUCTURE OF IRON-SUBSTITUTED ZSM-5 , 1995 .

[24]  Ming-Jing Hwang,et al.  Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules , 1994, J. Comput. Chem..

[25]  D. Bish Rietveld Refinement of the Kaolinite Structure at 1.5 K , 1993 .

[26]  A. Delville Structure and properties of confined liquids: a molecular model of the clay-water interface , 1993 .

[27]  A. Delville,et al.  Adsorption of vapor at a solid interface: a molecular model of clay wetting , 1993 .

[28]  D. R. Collins,et al.  Determination of acoustic phonon dispersion curves in layer silicates by inelastic neutron scattering and computer simulation techniques , 1993 .

[29]  D. R. Collins,et al.  Computer simulation of structures and cohesive properties of micas , 1992 .

[30]  A. Yamagishi,et al.  Theoretical studies on racemic adsorption of tris(1,10-phenanthroline)metal(II) by a clay: Monte Carlo simulations , 1992 .

[31]  A. Yamagishi,et al.  Theoretical study on the interactions between a metal chelate and a clay : Monte Carlo simulations , 1992 .

[32]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[33]  Keith Refson,et al.  Computer simulation of interlayer water in 2:1 clays , 1991 .

[34]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[35]  S. Guggenheim,et al.  Single crystal X-ray refinement of pyrophyllite-1Tc , 1981 .

[36]  H. Saalfeld,et al.  Refinement of the crystal structure of gibbsite, Al(OH)3 , 1974 .

[37]  J. W. Halley,et al.  Molecular dynamics simulation of iron(III) and its hydrolysis products in aqueous solution , 1995 .

[38]  Joachim Sauer,et al.  Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica , 1994 .

[39]  J. Nicholas,et al.  Molecular modeling of the enthalpies of adsorption of hydrocarbons on smectite clay , 1994 .

[40]  C. R. A. Catlow,et al.  Ab initio potentials for the calculation of the dynamical and elastic properties of α-quartz , 1993 .