Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements

[1]  J. Grace,et al.  Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation , 2007 .

[2]  S. Ollinger,et al.  The role of remote sensing in the study of terrestrial net primary production , 2007 .

[3]  T. A. Black,et al.  Photosynthetic light use efficiency of three biomes across an east–west continental-scale transect in Canada , 2006 .

[4]  S. Frolking,et al.  Statistical uncertainty of eddy flux-based estimates of gross ecosystem carbon exchange at Howland Forest, Maine , 2006 .

[5]  K. Davis,et al.  A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes , 2006 .

[6]  Peter R. J. North,et al.  Radiative transfer modeling of direct and diffuse sunlight in a Siberian pine forest , 2005 .

[7]  S. Ollinger,et al.  Net Primary Production and Canopy Nitrogen in a Temperate Forest Landscape: An Analysis Using Imaging Spectroscopy, Modeling and Field Data , 2005, Ecosystems.

[8]  T. A. Black,et al.  A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest , 2005 .

[9]  D. Hollinger,et al.  Statistical modeling of ecosystem respiration using eddy covariance data: Maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models , 2005 .

[10]  S. Wofsy,et al.  Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux , 2005 .

[11]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[12]  Qilong Min,et al.  Impacts of aerosols and clouds on forest‐atmosphere carbon exchange , 2005 .

[13]  Laurie A. Chisholm,et al.  Effects of leaf age and psyllid damage on the spectral reflectance properties of Eucalyptus saligna foliage , 2005 .

[14]  Lars Eklundh,et al.  Net primary production and light use efficiency in a mixed coniferous forest in Sweden , 2005 .

[15]  A. Robock Cooling following large volcanic eruptions corrected for the effect of diffuse radiation on tree rings , 2005 .

[16]  D. Schimel,et al.  Remembrance of Weather Past: Ecosystem Responses to Climate Variability , 2005 .

[17]  Robert B. Jackson,et al.  A history of atmospheric CO[2] and its effects on plants, animals, and ecosystems , 2005 .

[18]  F. Baret,et al.  Effect of senescent leaves on NDVI-based estimates of fAPAR: Experimental and modelling evidences , 2004 .

[19]  Markus Reichstein,et al.  Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland , 2004 .

[20]  E. Davidson,et al.  Spatial and temporal variability in forest–atmosphere CO2 exchange , 2004 .

[21]  Christopher J. Still,et al.  Large‐scale plant light‐use efficiency inferred from the seasonal cycle of atmospheric CO2 , 2004 .

[22]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[23]  S. Wofsy,et al.  Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data , 2004 .

[24]  Craig M. Trotter,et al.  Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species. , 2004, Functional plant biology : FPB.

[25]  Hans Peter Schmid,et al.  Photosynthetic and Water Use Efficiency Responses to Diffuse Radiation by an Aspen-Dominated Northern Hardwood Forest , 2004, Forest Science.

[26]  W. Cohen,et al.  Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation , 2003 .

[27]  J. Randerson,et al.  Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings , 2003 .

[28]  Dennis D. Baldocchi,et al.  Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis , 2003, Science.

[29]  S. T. Gower,et al.  A cross‐biome comparison of daily light use efficiency for gross primary production , 2003 .

[30]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[31]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[32]  Andrew D Richardson,et al.  Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting. , 2002, Tree physiology.

[33]  T. Vesala,et al.  Advantages of diffuse radiation for terrestrial ecosystem productivity , 2002 .

[34]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[35]  Andrew D. Richardson,et al.  An evaluation of noninvasive methods to estimate foliar chlorophyll content , 2002 .

[36]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[37]  C. Tucker,et al.  A Global 9-yr Biophysical Land Surface Dataset from NOAA AVHRR Data , 2000 .

[38]  T. A. Black,et al.  Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North American deciduous forests , 1999 .

[39]  Karl Fred Huemmrich,et al.  High temporal resolution NDVI phenology from micrometeorological radiation sensors , 1999 .

[40]  S. T. Gower,et al.  Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems , 1999 .

[41]  K. Hibbard,et al.  A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data , 1999 .

[42]  A. Bondeau,et al.  Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light‐use efficiency , 1999 .

[43]  A. Huete,et al.  MODIS VEGETATION INDEX ( MOD 13 ) ALGORITHM THEORETICAL BASIS DOCUMENT Version 3 . 1 Principal Investigators , 1999 .

[44]  D. Roberts,et al.  Spectral changes with leaf aging in Amazon caatinga , 1998, Trees.

[45]  G. Hammer,et al.  Radiation use efficiency increases when the diffuse component of incident radiation is enhanced under shade , 1998 .

[46]  J. Paruelo,et al.  ANPP ESTIMATES FROM NDVI FOR THE CENTRAL GRASSLAND REGION OF THE UNITED STATES , 1997 .

[47]  D. Hollinger Optimality and nitrogen allocation in a tree canopy. , 1996, Tree physiology.

[48]  S. Goward,et al.  Global Primary Production: A Remote Sensing Approach , 1995 .

[49]  Gérard Dedieu,et al.  Methodology for the estimation of terrestrial net primary production from remotely sensed data , 1994 .

[50]  David Y. Hollinger,et al.  Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere , 1994 .

[51]  J. Randerson,et al.  Terrestrial ecosystem production: A process model based on global satellite and surface data , 1993 .

[52]  P. Sellers Canopy reflectance, photosynthesis and transpiration , 1985 .

[53]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .