Baxter tree-like tableaux

Tree-like tableaux are objects in bijection with alternative or permutation tableaux. They have been the subject of a fruitful combinatorial study for the past few years. In the present work, we define and study a new subclass of tree-like tableaux enumerated by Baxter numbers. We exhibit simple bijective links between these objects and three other combinatorial classes: (packed or mosaic) floorplans, twisted Baxter permutations and triples of non-intersecting lattice paths. From several (and unrelated) works, these last objects are already known to be enumerated by Baxter numbers, and our main contribution is to provide a unifying approach to bijections between Baxter objects, where Baxter tree-like tableaux play the key role. We moreover get new enumerative results about alternating twisted Baxter permutations. Finally, we define a new subfamily of floorplans, which we call alternating floorplans, and we enumerate these combinatorial objects.

[1]  Jean-Christophe Aval,et al.  Tree-like Tableaux , 2013, Electron. J. Comb..

[2]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[3]  Jean-Christophe Aval,et al.  Combinatorics of non-ambiguous trees , 2014, Adv. Appl. Math..

[4]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[5]  Rodney Baxter Dichromatic Polynomials and Potts Models Summed Over Rooted Maps , 2000 .

[6]  Stefan Felsner,et al.  Bijections for Baxter families and related objects , 2008, J. Comb. Theory A.

[7]  Sergey Kitaev,et al.  (2+2)-free Posets, Ascent Sequences and Pattern Avoiding Permutations , 2008, J. Comb. Theory, Ser. A.

[8]  Nathan Reading Lattice congruences, fans and Hopf algebras , 2005, J. Comb. Theory, Ser. A.

[9]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[10]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[11]  S. Dulucq,et al.  Baxter permutations , 1998, Discret. Math..

[12]  Henrik Eriksson,et al.  Chess Tableaux , 2005, Electron. J. Comb..

[13]  Ron Y. Pinter,et al.  A bijection between permutations and floorplans, and its applications , 2006, Discret. Appl. Math..

[14]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[15]  G. Baxter,et al.  On fixed points of the composite of commuting functions , 1964 .

[16]  Samuele Giraudo Algebraic and combinatorial structures on Baxter permutations , 2010, 1011.4288.

[17]  Dinesh P. Mehta,et al.  The quarter-state-sequence floorplan representation , 2003 .

[18]  Robert Cori,et al.  Shuffle of parenthesis systems and baxter permutations , 1986, J. Comb. Theory, Ser. A.

[19]  Ronald L. Graham,et al.  Floorplan representations: Complexity and connections , 2003, TODE.

[20]  Olivier Guibert Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young , 1995 .

[21]  Nathan Reading,et al.  The Hopf algebra of diagonal rectangulations , 2010, Journal of Combinatorial Theory.