Silencing of microRNA families by seed-targeting tiny LNAs

[1]  M. Lindholm,et al.  Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates , 2010, Nucleic acids research.

[2]  V. Ambros,et al.  Inhibiting miRNA in Caenorhabditis elegans using a potent and selective antisense reagent , 2010, Silence.

[3]  Barbara Robertson,et al.  Specificity and functionality of microRNA inhibitors , 2010, Silence.

[4]  Robert A. Weinberg,et al.  Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model , 2010, Nature Biotechnology.

[5]  S. Kauppinen,et al.  Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection , 2010, Science.

[6]  H. Soifer,et al.  Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents , 2009, Nucleic acids research.

[7]  Doron Betel,et al.  Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. , 2009, Genes & development.

[8]  E. Olson,et al.  A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. , 2009, Developmental cell.

[9]  D. V. Vactor,et al.  NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript NIH Public Access Author Manuscript Nat Methods. Author manuscript; available in PMC 2011 September 30. , 2009 .

[10]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[11]  Yuan Zhang,et al.  CD47 Regulates Collagen I-Induced Cyclooxygenase-2 Expression and Intestinal Epithelial Cell Migration , 2009, PloS one.

[12]  J. Stenvang,et al.  Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF , 2009, Nucleic acids research.

[13]  Min Liu,et al.  Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma , 2009, Cell Research.

[14]  E. Olson,et al.  MicroRNA control of muscle development and disease. , 2009, Current opinion in cell biology.

[15]  Andrea Ventura,et al.  MicroRNAs and Cancer: Short RNAs Go a Long Way , 2009, Cell.

[16]  M. Moran,et al.  Automated 2D peptide separation on a 1D nano-LC-MS system. , 2009, Journal of proteome research.

[17]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[18]  Anna M. Krichevsky,et al.  miR-21: a small multi-faceted RNA , 2008, Journal of cellular and molecular medicine.

[19]  Luigi Naldini,et al.  Stable knockdown of microRNA in vivo by lentiviral vectors , 2009, Nature Methods.

[20]  T. Tuschl,et al.  Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex , 2008, Nature.

[21]  T. Tuschl,et al.  Structure of the guide-strand-containing argonaute silencing complex , 2008, Nature.

[22]  Anton J. Enright,et al.  Detecting microRNA binding and siRNA off-target effects from expression data , 2008, Nature Methods.

[23]  P. Zamore,et al.  Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells , 2008, Nature Protocols.

[24]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[25]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[26]  Bernhard Kuster,et al.  Robust and Sensitive iTRAQ Quantification on an LTQ Orbitrap Mass Spectrometer*S , 2008, Molecular & Cellular Proteomics.

[27]  B. Cullen,et al.  Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. , 2008, Cell host & microbe.

[28]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[29]  Phillip A Sharp,et al.  Suppression of non-small cell lung tumor development by the let-7 microRNA family , 2008, Proceedings of the National Academy of Sciences.

[30]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[31]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[32]  A. Krogh,et al.  Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells* , 2008, Journal of Biological Chemistry.

[33]  A. Silahtaroglu,et al.  Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver , 2007, Nucleic acids research.

[34]  M. Siomi,et al.  In vitro RNA cleavage assay for Argonaute-family proteins. , 2008, Methods in molecular biology.

[35]  H. Horvitz,et al.  Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability , 2007, PLoS genetics.

[36]  Margaret S. Ebert,et al.  MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells , 2007, Nature Methods.

[37]  F. Slack,et al.  The let-7 microRNA represses cell proliferation pathways in human cells. , 2007, Cancer research.

[38]  Giovanni Vanni Frajese,et al.  miR-221 and miR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1* , 2007, Journal of Biological Chemistry.

[39]  Reuven Agami,et al.  Regulation of the p27Kip1 tumor suppressor by miR‐221 and miR‐222 promotes cancer cell proliferation , 2007 .

[40]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[41]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[42]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[43]  G. Maira,et al.  Regulation of the p 27 Kip 1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation , 2007 .

[44]  S. Cohen,et al.  microRNA functions. , 2007, Annual review of cell and developmental biology.

[45]  Christine A. Miller,et al.  Efficient Fractionation and Improved Protein Identification by Peptide OFFGEL Electrophoresis*S , 2006, Molecular & Cellular Proteomics.

[46]  Mark Graham,et al.  miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. , 2006, Cell metabolism.

[47]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[48]  R. Myers,et al.  Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data , 2005, Nucleic acids research.

[49]  V. Ambros,et al.  Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. , 2005, Genes & development.

[50]  H. Horvitz,et al.  The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. , 2005, Developmental cell.

[51]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[52]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[53]  J. Wengel,et al.  LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. , 2004, Biochemistry.

[54]  S. Ostrand-Rosenberg,et al.  Immunotherapy with vaccines combining MHC class II/CD80+ tumor cells with interleukin-12 reduces established metastatic disease and stimulates immune effectors and monokine induced by interferon γ , 2000, Cancer Immunology, Immunotherapy.

[55]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.