The dynamic descriptive complexity of k-clique

Abstract In this work the dynamic descriptive complexity of the k-clique query is studied. It is shown that when edges may only be inserted then k-clique can be maintained by a quantifier-free update program of arity k − 1 , but it cannot be maintained by a quantifier-free update program of arity k − 2 (even in the presence of unary auxiliary functions). This establishes an arity hierarchy for graph queries for quantifier-free update programs under insertions. The proof of the lower bound uses upper and lower bounds for Ramsey numbers.

[1]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[2]  Kousha Etessami,et al.  Dynamic Tree Isomorphism via First-Order Updates. , 1998, PODS 1998.

[3]  Thomas Schwentick,et al.  The dynamic complexity of formal languages , 2008, TOCL.

[4]  Vojtech Rödl,et al.  Shift graphs and lower bounds on Ramsey numbers rk(l; r) , 1995, Discret. Math..

[5]  Thomas Schwentick,et al.  Dynamic conjunctive queries , 2017, J. Comput. Syst. Sci..

[6]  Thomas Schwentick,et al.  On the quantifier-free dynamic complexity of Reachability , 2013, Inf. Comput..

[7]  Limsoon Wong,et al.  Incremental recomputation in local languages , 2003, Inf. Comput..

[8]  Limsoon Wong,et al.  On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQL , 1995, DBPL.

[9]  Guozhu Dong,et al.  Incremental Evaluation of Datalog Queries , 1992, ICDT.

[10]  Neil Immerman,et al.  Dyn-FO: A Parallel, Dynamic Complexity Class , 1997, J. Comput. Syst. Sci..

[11]  Neil Immerman,et al.  Dynamic computational complexity , 2003 .

[12]  Thomas Schwentick,et al.  Dynamic Complexity Theory Revisited , 2005, Theory of Computing Systems.

[13]  Jianwen Su,et al.  Deterministic FOIES are strictly weaker , 2004, Annals of Mathematics and Artificial Intelligence.

[14]  Thomas Zeume The Dynamic Descriptive Complexity of k-Clique , 2014, MFCS.

[15]  Jianwen Su,et al.  First-Order Incremental Evaluation of Datalog Queries , 1993, DBPL.

[16]  P. Erdös,et al.  Combinatorial Theorems on Classifications of Subsets of a Given Set , 1952 .

[17]  A. Hajnal,et al.  Partition relations for cardinal numbers , 1965 .

[18]  William Hesse,et al.  The dynamic complexity of transitive closure is in DynTC0 , 2001, Theor. Comput. Sci..

[19]  Jianwen Su,et al.  Arity Bounds in First-Order Incremental Evaluation and Definition of Polynomial Time Database Queries , 1998, J. Comput. Syst. Sci..

[20]  Sebastian Siebertz,et al.  Dynamic definability , 2012, ICDT '12.