Nanosponges for hydrogen storage

Hydrogen storage by physisorption is a very promising technique due to its fast kinetics and full reversibility. The key to reach high storage capacities is high specific surface area. Extremely large surface areas can only be achieved by materials with high porosity, i.e., nanosponges like MOF-177 (4239 m2 g−1) and DUT-23(Co) (4850 m2 g−1). Even specific surface areas of more than 6000 m2 g−1 have been recently reported in the literature and these new materials reach hydrogen excess uptakes up to 9 wt% at 77 K. Within the novel class of metal–organic frameworks (MOFs), crystalline materials can be synthesized with well-defined pore structure and inner surface areas exceeding the best activated carbons. An overview is given on adsorption and desorption measurements performed mainly in our laboratory. The focus of this paper lies on the progress achieved in understanding the structure–property relationship of hydrogen adsorption in nanosponges. Furthermore, technologically relevant parameters as total and usable capacities are introduced.

[1]  Donald J. Siegel,et al.  High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. , 2010, Chemical Society reviews.

[2]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[3]  Mohamed Eddaoudi,et al.  Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties , 2000 .

[4]  Flemming Besenbacher,et al.  Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. , 2009, ACS nano.

[5]  M. Hirscher,et al.  Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes. , 2011, Chemistry.

[6]  Paul A. Anderson,et al.  Hydrogen adsorption in zeolites a, x, y and rho , 2003 .

[7]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[8]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[9]  M. Hirscher,et al.  Characterization of hydrogen/deuterium adsorption sites in nanoporous Cu―BTC by low-temperature thermal-desorption mass spectroscopy , 2011 .

[10]  Michael Hirscher,et al.  Low-temperature thermal-desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials , 2007 .

[11]  Miroslav Haluska,et al.  Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids , 2003 .

[12]  M. Hirscher,et al.  Desorption studies of hydrogen in metal-organic frameworks. , 2008, Angewandte Chemie.

[13]  M. Hirscher,et al.  Raman studies of hydrogen adsorbed on nanostructured porous materials. , 2008, Physical chemistry chemical physics : PCCP.

[14]  G. McIntyre,et al.  Determination of the hydrogen absorption sites in Zn4O(1,4-benzenedicarboxylate) by single crystal neutron diffraction. , 2006, Chemical communications.

[15]  F. Mertens Determination of absolute adsorption in highly ordered porous media , 2009 .

[16]  Vanessa K. Peterson,et al.  Inelastic neutron scattering of H2 adsorbed in HKUST-1 , 2007 .

[17]  A. Züttel,et al.  Model for the hydrogen adsorption on carbon nanostructures , 2004 .

[18]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[19]  U. Mueller,et al.  A mesoporous metal-organic framework. , 2009, Angewandte Chemie.

[20]  Gérard Férey,et al.  Calculating Geometric Surface Areas as a Characterization Tool for Metal−Organic Frameworks , 2007 .

[21]  S. Kaskel,et al.  A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. , 2009, Dalton transactions.

[22]  K. Thomas,et al.  Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. , 2009, Dalton transactions.

[23]  Gérard Férey,et al.  Heat of adsorption for hydrogen in microporous high-surface-area materials. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[25]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[26]  B. Noll,et al.  Synthesis, structural characterization, gas sorption and guest-exchange studies of the lightweight, porous metal-organic framework alpha-[Mg3(O2CH)6]. , 2006, Inorganic chemistry.

[27]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[28]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[29]  Alexander Hofmann,et al.  Ab initio study of hydrogen adsorption in MOF-5. , 2009, Journal of the American Chemical Society.

[30]  M. Fröba,et al.  New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyl dicarboxylate) , 2009 .

[31]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[32]  Richard Chahine,et al.  Low-pressure adsorption storage of hydrogen , 1994 .

[33]  Ulrich Eberle,et al.  Chemical and physical solutions for hydrogen storage. , 2009, Angewandte Chemie.

[34]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[35]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[36]  M. Hirscher,et al.  Route to a family of robust, non-interpenetrated metal-organic frameworks with pto-like topology. , 2011, Chemistry.

[37]  Randall Q. Snurr,et al.  Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal-organic frameworks , 2010 .

[38]  R. Chahine,et al.  Volumetric hydrogen sorption capacity of monoliths prepared by mechanical densification of MOF-177 , 2010 .

[39]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[40]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[41]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[42]  M. Hirscher,et al.  Influence of [Mo6Br8F6]2- cluster unit inclusion within the mesoporous solid MIL-101 on hydrogen storage performance. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[43]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[44]  M. Hirscher,et al.  Hydrogen desorption properties of mechanically alloyed MgH2 composite materials , 2000 .

[45]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[46]  M. Hirscher,et al.  A high heat of adsorption for hydrogen in magnesium formate. , 2010, ChemSusChem.

[47]  M. Hirscher,et al.  Hydrogen desorption kinetics of nanostructured MgH2 composite materials , 2002 .

[48]  Craig M. Brown,et al.  Neutron powder diffraction study of D2 sorption in Cu3(1,3,5-benzenetricarboxylate)2. , 2006, Journal of the American Chemical Society.

[49]  M. Hirscher,et al.  Hydrogen physisorption in high SSA microporous materials A comparison between AX-21_33 and MOF-177 , 2011 .

[50]  M. Hirscher,et al.  Metal-organic frameworks for hydrogen storage , 2010 .