Synergistic Use of Remote Sensing for Snow Cover and Snow Water Equivalent Estimation

An increasing number of satellite sensors operating in the optical and mi crowave spectral bands represent an opportunity for utilizing multi -sensor fusion and data assimilation techniques for improving the estimation of snowpack properties using remote sensing. In this paper, the strength of a synergistic approach of leveraging optical, active and passive microwave remote sensing measurements to estimate snowpack characteristics is discussed and examples from recent work are given. Observations with each type of sensor have specific technical constraints and limitations. Optical sensor data has high spatial resolution but is limited to cloud free days, whereas passive microwave sensors have coarse spatial resolution and are sensitive to multiple snowpack properties. Multi source and multi-temporal remote sensing data therefore h old great promise for moving the monitoring and analysis of snow toward estimates of a suite of snow properties at high spatial and temporal resolution.

[1]  Chris Derksen,et al.  Hemispheric snow water equivalent: The need for a synergistic approach , 2012 .

[2]  Dorothy K. Hall,et al.  Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology , 1997 .

[3]  D. Robinson,et al.  Global Snow Cover Monitoring: An Update , 1993 .

[4]  Hongjie Xie,et al.  Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements , 2010 .

[5]  Anne W. Nolin,et al.  Recent advances in remote sensing of seasonal snow , 2010, Journal of Glaciology.

[6]  Dorothy K. Hall,et al.  Global SWE monitoring using AMSR-E data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[7]  David A. Robinson,et al.  Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty , 2010 .

[8]  D. Hall,et al.  Accuracy assessment of the MODIS snow products , 2007 .

[9]  Ivan Csiszar,et al.  Automated Monitoring of Snow Cover over North America with Multispectral Satellite Data , 2000 .

[10]  Martti Hallikainen,et al.  HUT snow emission model and its applicability to snow water equivalent retrieval , 1999, IEEE Trans. Geosci. Remote. Sens..

[11]  Helmut Rott,et al.  Snow-Cover Parameters Retrieved from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) Data , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Norman C. Grody,et al.  Global identification of snowcover using SSM/I measurements , 1996, IEEE Trans. Geosci. Remote. Sens..

[13]  Alexandre Langlois,et al.  Monitoring the melt season length of the Barnes Ice Cap over the 1979–2010 period using active and passive microwave remote sensing data , 2012 .

[14]  Martti Hallikainen,et al.  Combined active and passive microwave remote sensing of snow in Finland , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[15]  Shihyan Lee,et al.  A review of global satellite-derived snow products , 2012 .

[16]  B. E. Goodison,et al.  Determination Of Areal Snow Water Equivalent On The Canadian Prairies Using Passive Microwave Satellite Data , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[17]  Norman C. Grody,et al.  Relationship between snow parameters and microwave satellite measurements: Theory compared with Advanced Microwave Sounding Unit observations from 23 to 150 GHz , 2008 .

[18]  Edward J. Kim,et al.  A blended global snow product using visible, passive microwave and scatterometer satellite data , 2011 .

[19]  Dorothy K. Hall,et al.  Nimbus-7 SMMR derived global snow cover parameters , 1987 .

[20]  H. Rott,et al.  The analysis of backscattering properties from SAR data of mountain regions , 1984 .

[21]  Reza Khanbilvardi,et al.  CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data , 2012 .

[22]  Fawwaz T. Ulaby,et al.  The active and passive microwave response to snow parameters: 2. Water equivalent of dry snow , 1980 .

[23]  Improvement in Estimating Snowpack Properties with SSM/I Data and Land Cover Using Artificial Neural Networks , 2006, 2006 IEEE MicroRad.

[24]  A. Hall,et al.  What Controls the Strength of Snow-Albedo Feedback? , 2007 .

[25]  Son V. Nghiem,et al.  Global snow cover monitoring with spaceborne Ku-band scatterometer , 2001, IEEE Trans. Geosci. Remote. Sens..

[26]  Thomas H. Painter,et al.  Time-space continuity of daily maps of fractional snow cover and albedo from MODIS , 2008 .

[27]  Ivan Csiszar,et al.  Satellite-derived snow cover maps for north America: Accuracy assessment , 2002 .

[28]  J. Dyer Snow depth and streamflow relationships in large North American watersheds , 2008 .

[29]  Chris Derksen,et al.  Detection of pan-Arctic terrestrial snowmelt from QuikSCAT, 2000–2005 , 2008 .

[30]  A. Wiesmann,et al.  Microwave Emission Model of Layered Snowpacks , 1999 .

[31]  Richard Fernandes,et al.  Validation of VEGETATION, MODIS, and GOES + SSM/I snow‐cover products over Canada based on surface snow depth observations , 2003 .

[32]  Helmut Rott,et al.  Retrieval of wet snow by means of multitemporal SAR data , 2000, IEEE Trans. Geosci. Remote. Sens..

[33]  Mary Jo Brodzik,et al.  Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms , 2002, Annals of Glaciology.

[34]  W. Barnes,et al.  A cloud physics radiometer , 1978 .

[35]  Helmut Rott,et al.  Synthetic aperture radar capabilities for snow and glacier monitoring , 1984 .

[36]  C. Matzler,et al.  Towards the Definition of Optimum Sensor Specifications for Microwave Remote Sensing of Snow , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Simon Yueh,et al.  Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Edward J. Kim,et al.  Quantifying Uncertainty in Modeling Snow Microwave Radiance for a Mountain Snowpack at the Point-Scale, Including Stratigraphic Effects , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Dan Tarpley,et al.  Enhanced algorithm for estimating snow depth from geostationary satellites , 2007 .

[40]  Fawwaz T. Ulaby,et al.  Dielectric Properties of Snow , 1980 .

[41]  Christian Mätzler,et al.  Microwave dielectric properties of surface snow , 1984 .

[42]  Leung Tsang,et al.  A prototype AMSR-E global snow area and snow depth algorithm , 2003, IEEE Trans. Geosci. Remote. Sens..

[43]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[44]  B. Ramsay,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/hyp.6720 Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS) † , 2022 .