Analogues of the Shannon Capacity of a Graph
暂无分享,去创建一个
[1] László Lovász,et al. Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.
[2] Dennis P. Geller,et al. The chromatic number and other functions of the lexicographic product , 1975 .
[3] L. Lovász. Minimax theorems for hypergraphs , 1974 .
[4] M. Rosenfeld. ON A PROBLEM OF C. E. SHANNON IN GRAPH THEORY , 1967 .
[5] Claude E. Shannon,et al. The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.
[6] R. McEliece,et al. Hide and Seek, Data Storage, and Entropy , 1971 .
[7] M. Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .
[8] Fred S. Roberts,et al. ON THE MOBILE RADIO FREQUENCY ASSIGNMENT PROBLEM AND THE TRAFFIC LIGHT PHASING PROBLEM , 1979 .
[9] Shuo-Yen Robert Li,et al. Independence numbers of graphs and generators of ideals , 1981, Comb..
[10] J. Seidel. Strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3 , 1968 .
[11] Alexander Schrijver,et al. A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.
[12] Dennis P. Geller,et al. R-tuple Colorings of Uniquely Colorable Graphs , 1976, Discret. Math..
[13] S. Stahl. n-Tuple colorings and associated graphs , 1976 .
[14] A. Schrijver. Association schemes and the Shannon capacity: Eberlein-polynomials and the Erdos-Ko-Rado Theorem , 1981 .
[15] L. Lovász. A Characterization of Perfect Graphs , 1972 .
[16] R. McEliece,et al. The Lovasz bound and some generalizations , 1978 .
[17] F. H. Clarke,et al. Multicolorings, measures and games on graphs , 1976, Discret. Math..
[18] D. R. Fulkerson,et al. Blocking and anti-blocking pairs of polyhedra , 1971, Math. Program..
[19] David S. Johnson,et al. Two Results Concerning Multicoloring , 1978 .
[20] László Lovász,et al. Normal hypergraphs and the perfect graph conjecture , 1972, Discret. Math..
[21] David S. Johnson,et al. The Complexity of Near-Optimal Graph Coloring , 1976, J. ACM.
[22] M. Rosenfeld. Graphs with a large capacity , 1970 .
[23] Vašek Chvátal,et al. Ramsey's theorem and self-complementary graphs , 1972, Discret. Math..
[24] Modified linear dependence and the capacity of a cyclic graph , 1977 .
[25] R. S. Hales,et al. Numerical invariants and the strong product of graphs , 1973 .
[26] Imre Bárány,et al. A Short Proof of Kneser's Conjecture , 1978, J. Comb. Theory, Ser. A.
[27] Willem H. Haemers,et al. On Some Problems of Lovász Concerning the Shannon Capacity of a Graph , 1979, IEEE Trans. Inf. Theory.
[28] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[29] S. H. Scott,et al. A (<5)-Colour Theorem for Planar Graphs , 1973 .
[30] P. D. Seymour,et al. On Multi‐Colourings of Cubic Graphs, and Conjectures of Fulkerson and Tutte , 1979 .