Evaluation of SWIR-based methods for quantifying active volcano radiant emissions using NASA EOS-ASTER data

Analysis of thermally emissive volcanic features using satellite infrared remote sensing has been conducted over recent decades, primarily using shortwave and thermal infrared (SWIR; TIR) radiance data. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), mounted on the Earth Observation System (EOS) Terra satellite, offers an advance on earlier instruments, having more bands covering the SWIR atmospheric window and offering a wider dynamic range. This paper compares methods used to analyse ASTER SWIR imagery of active volcanoes, using both simulated cases and actual ASTER imagery of Lascar Volcano, and focuses on radiative power estimates. Those based on the Oppenheimer approach are found to be most reliable for simulated surfaces, with the Lombardo and Buongiorno and Dozier retrievals having larger uncertainties in most cases. However, the Dozier Method results in the highest proportion of successful retrievals, the reliability of which is influenced by factors including band combination, gain setting and saturation. The radiative power metric is shown as a more reliable measure than sub-pixel characterisations of hotspot temperature and area, as retrieved by these methods. We conclude with an assessment of ASTER in terms of its utility for providing quantitative observations of active volcanic surfaces.

[1]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[2]  M. Dragoni,et al.  Downslope flow models of a Bingham liquid: Implications for lava flows , 1986 .

[3]  Simon J. Hook,et al.  Using satellite data to characterize the temporal thermal behavior of an active volcano: Mount St. Helens, WA , 2006 .

[4]  Simon A. Carn,et al.  A satellite chronology of the May–June 2003 eruption of Anatahan volcano , 2005 .

[5]  Jonathan H. Fink,et al.  Lava Flows and Domes: Emplacement Mechanisms and Hazard Implications , 2011 .

[6]  P. Mouginis-Mark,et al.  COOLING RATE OF AN ACTIVE HAWAIIAN LAVA FLOW FROM NIGHTTIME SPECTRORADIOMETER MEASUREMENTS , 1992 .

[7]  Rebecca Castano,et al.  Multi-instrument remote and in situ observations of the Erebus Volcano (Antarctica) lava lake in 2005: A comparison with the Pele lava lake on the jovian moon Io , 2008 .

[8]  Ludwig Boltzmann,et al.  Ableitung des Stefan'schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie , 1884 .

[9]  B. W. Atkinson CHAPTER 3 – UPPER AIR DATA , 1985 .

[10]  Martin J. Wooster,et al.  Discrimination of lava dome activity styles using satellite-derived thermal structures , 2000 .

[11]  F. Polcyn,et al.  Infrared Surveys of Hawaiian Volcanoes , 1964, Science.

[12]  R. S. J. Sparks,et al.  The 1984 to 1996 cyclic activity of Lascar Volcano, northern Chile: cycles of dome growth, dome subsidence, degassing and explosive eruptions , 1997 .

[13]  Steve Ankuo Chien,et al.  Monitoring active volcanism with the Autonomous Sciencecraft Experiment on EO-1 , 2006 .

[14]  A. Harris,et al.  MODVOLC: near-real-time thermal monitoring of global volcanism , 2004 .

[15]  Martin J. Wooster,et al.  Long‐term infrared surveillance of Lascar Volcano: Contrasting activity cycles and cooling pyroclastics , 2001 .

[16]  V. Lombardo,et al.  Lava flow thermal analysis using three infrared bands of remote-sensing imagery: A study case from Mount Etna 2001 eruption , 2006 .

[17]  H. Fujisada,et al.  ASTER instrument performance, operation status, and application to Earth sciences , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[18]  Maria Fabrizia Buongiorno,et al.  Spatial variations in lava flow field thermal structure and effusion rate derived from very high spatial resolution hyperspectral (MIVIS) data , 2009 .

[19]  Keith A. Horton,et al.  Distribution of thermal areas on an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991 , 1994 .

[20]  M. Ramsey,et al.  Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing , 2004 .

[21]  Peter I. Miller,et al.  Low-cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus , 1997 .

[22]  E. P. McClam,et al.  A Method for Satellite Identification of Surface Temperature Fields of Subpixel Resolution , 2002 .

[23]  L. Glaze,et al.  Measuring thermal budgets of active volcanoes by satellite remote sensing , 1989, Nature.

[24]  Martin J. Wooster,et al.  Monitoring the development of active lava domes using data from the ERS-1 Along Track Scanning Radiometer , 1998 .

[25]  Steve A. Chien,et al.  Onboard instrument processing concepts for the HyspIRI mission , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[26]  Clive Oppenheimer,et al.  Lava flow cooling estimated from Landsat Thematic Mapper infrared data: The Lonquimay Eruption (Chile, 1989) , 1991 .

[27]  M. Wooster,et al.  Remote sensing: sensors and systems , 2007 .

[28]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[29]  Michael S. Ramsey,et al.  Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR , 2004 .

[30]  R. Wright,et al.  Cooling rate of some active lavas determined using an orbital imaging spectrometer , 2010 .

[31]  E. Pringsheim,et al.  On the Law of Distribution of Energy in the Normal Spectrum , 2003 .

[33]  S. Hook,et al.  NASA 2009 HyspIRI Science Workshop Report , 2010 .

[34]  C. Justice,et al.  Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER) , 2008 .

[35]  D. Tedesco,et al.  The magmatic- and hydrothermal-dominated fumarolic system at the Active Crater of Lascar volcano, northern Chile , 2009 .

[36]  Saskia M. van Manen,et al.  Satellite remote sensing of thermal activity at Bezymianny and Kliuchevskoi from 1993 to 1998 , 2009 .

[37]  Masatane Kato,et al.  ASTER STATUS AND DATA APPLICATION USE , 2001 .

[38]  J. Dozier,et al.  Identification of Subresolution High Temperature Sources Using a Thermal IR Sensor , 1981 .

[39]  Willy Wien,et al.  Ueber die Energievertheilung im Emissionsspectrum eines schwarzen Körpers , 1896 .

[40]  Tjondro Indrasutanto,et al.  Dynamics of Lava Flows , 2009 .

[41]  Akira Iwasaki,et al.  ASTER geometric performance , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[42]  David C. Pieri,et al.  Differences in Landsat TM derived lava flow thermal structures during summit and flank eruption at Mount Etna , 2004 .

[43]  Martin J. Wooster,et al.  Small‐scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires , 2002 .

[44]  M. Abrams,et al.  ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia , 2005 .

[45]  Michael S. Ramsey,et al.  ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia , 2008 .

[46]  John W. Salisbury,et al.  Mid-infrared (2.5 to 13.5 mm) spectra of igneous rocks , 1988 .

[47]  C. Justice,et al.  Validation of the MODIS active fire product over Southern Africa with ASTER data , 2005 .

[48]  D. Rothery,et al.  Volcano monitoring using short wavelength infrared data from satellites , 1988 .

[49]  David A. Rothery,et al.  Remote Sensing of Active Volcanoes , 2000 .

[50]  A. Harris,et al.  Improved identification of volcanic features using Landsat 7 ETM , 2001 .

[51]  B.R. Hirn,et al.  Automated, multi-payload, high-resolution temperature mapping and instant lava effusion rate determination at erupting volcanoes , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[52]  Zhihao Qin,et al.  Remote sensing analysis of the land surface temperature anomaly in the sand-dune region across the Israel-Egypt border , 2002 .

[53]  Alexander Belousov,et al.  Detection of a new summit crater on Bezymianny Volcano lava dome: satellite and field-based thermal data , 2007 .

[54]  Robert Wright,et al.  On the retrieval of lava-flow surface temperatures from infrared satellite data , 2003 .

[55]  C. Justice,et al.  Effect of wavelength selection on characterization of fire size and temperature , 2003 .

[56]  P. Francis,et al.  Volcanology from space - Using Landsat thematic mapper data in the central Andes , 1986 .

[57]  M. Planck Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .

[58]  Robert Wright,et al.  Space-based estimate of the volcanic heat flux into the atmosphere during 2001 and 2002 , 2004 .

[59]  Clive Oppenheimer,et al.  Infrared image analysis of volcanic thermal features: Láscar Volcano, Chile, 1984–1992 , 1993 .

[60]  Martin J. Wooster,et al.  Thermal monitoring of Lascar Volcano, Chile, using infrared data from the along-track scanning radiometer: a 1992–1995 time series , 1997 .

[61]  Clive Oppenheimer,et al.  Thermal distributions of hot volcanic surfaces constrained using three infrared bands of remote sensing data , 1993 .

[62]  David C. Pieri,et al.  Analysis of active volcanoes from the earth observing system , 1991 .

[63]  David C. Pieri,et al.  ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit , 2004 .

[64]  Michael S. Ramsey,et al.  The 2005 eruption of Kliuchevskoi volcano: Chronology and processes derived from ASTER spaceborne and field-based data , 2009 .

[65]  David J. Schneider,et al.  Exploring the limits of identifying sub-pixel thermal features using ASTER TIR data , 2010 .

[66]  D. Rothery,et al.  Using the Landsat Thematic Mapper to detect and monitor active volcanoes: An example from Lascar volcano, northern Chile , 1987 .

[67]  L. Keszthelyi,et al.  Calculation of lava effusion rates from Landsat TM data , 1998 .

[68]  Infrared Radiance of Mount Etna, Sicily , 2007 .

[69]  D. Rothery The Need For Volcano Monitoring And The Ability To Detect Activity Using Emitted Short Wavelength Infrared , 1988, International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century'..

[70]  M. Wooster,et al.  Testing the accuracy of solar-reflected radiation corrections applied during satellite shortwave infrared thermal analysis of active volcanoes , 2001 .

[71]  L. Flynn,et al.  Comparison of the response of the Landsat 7 Enhanced Thematic Mapper Plus and the Earth Observing-1 Advanced Land Imager over active lava flows , 2004 .

[72]  Howard S. Seifert,et al.  Jet Propulsion Laboratory , 2008 .