Weak containment and Rokhlin entropy

We define a new notion of weak containment for joinings, and we show that this notion implies an inequality between relative Rokhlin entropies. This leads to new upper bounds to Rokhlin entropy. We also use this notion to study how Pinsker algebras behave under direct products, and we study the Rokhlin entropy of restricted actions of finite-index subgroups.

[1]  Lewis Bowen,et al.  Measure conjugacy invariants for actions of countable sofic groups , 2008, 0804.3582.

[2]  A. I. Danilenko Entropy Theory from the Orbital Point of View , 2001 .

[3]  Stevo Todorcevic,et al.  BOREL CHROMATIC NUMBERS , 1999 .

[4]  Hanfeng Li,et al.  Entropy and the variational principle for actions of sofic groups , 2010, 1005.0399.

[5]  Vladimir Pestov,et al.  Hyperlinear and Sofic Groups: A Brief Guide , 2008, Bulletin of Symbolic Logic.

[6]  Robin D. Tucker-Drob Weak equivalence and non-classifiability of measure preserving actions , 2012, Ergodic Theory and Dynamical Systems.

[7]  B. Weiss,et al.  Entropy theory without a past , 2000, Ergodic Theory and Dynamical Systems.

[8]  Benjamin Naumann,et al.  Classical Descriptive Set Theory , 2016 .

[9]  Miklós Abért,et al.  Kesten's theorem for Invariant Random Subgroups , 2012, 1201.3399.

[10]  A remark about the spectral radius , 2013, 1306.1767.

[11]  Andreas Thom,et al.  The expected degree of minimal spanning forests , 2013, Comb..

[12]  Ian Agol,et al.  The virtual Haken conjecture , 2012, 1204.2810.

[13]  Pierre Paul Romagnoli,et al.  Shearer’s inequality and infimum rule for Shannon entropy and topological entropy , 2015, 1502.07459.

[14]  D. Rudolph,et al.  Non-Bernoulli systems with completely positive entropy , 2008, Ergodic Theory and Dynamical Systems.

[15]  L. Bowen Every countably infinite group is almost Ornstein , 2011, 1103.4424.

[16]  John C. Kieffer,et al.  A Generalized Shannon-McMillan Theorem for the Action of an Amenable Group on a Probability Space , 1975 .

[17]  Benjamin Weiss,et al.  Entropy and isomorphism theorems for actions of amenable groups , 1987 .

[18]  Mixing and Spectral Gap Relative to Pinsker Factors for Sofic Groups , 2015, 1509.07839.

[19]  Miklós Abért,et al.  Bernoulli actions are weakly contained in any free action , 2011, Ergodic Theory and Dynamical Systems.

[20]  A. Kechris Weak containment in the space of actions of a free group , 2012 .

[21]  Peter J. Burton,et al.  Naive entropy of dynamical systems , 2015, 1503.06360.

[22]  Brandon Seward A subgroup formula for f-invariant entropy , 2012, Ergodic Theory and Dynamical Systems.

[23]  L. Young Entropy in dynamical systems , 2003 .

[24]  Hanfeng Li,et al.  Soficity, amenability, and dynamical entropy , 2010, 1008.1429.

[25]  Lewis Bowen,et al.  Sofic entropy and amenable groups , 2010, Ergodic Theory and Dynamical Systems.

[26]  Brandon Seward Krieger’s finite generator theorem for actions of countable groups I , 2014, Inventiones mathematicae.

[27]  Robin D. Tucker-Drob,et al.  On a co-induction question of Kechris , 2011, 1105.0648.

[28]  Brandon Seward,et al.  Borel structurability on the 2-shift of a countable group , 2014, Ann. Pure Appl. Log..