Solution of Non-Fourier Temperature Field in a Hollow Sphere under Harmonic Boundary Condition

Analytical solution of the axisymmetric two-dimensional non-Fourier temperature field within a hollow sphere is investigated considering Cattaneo-Vernotte constitutive equation with general time-dependent heat flux. The material is assumed to be homogeneous and isotropic with temperature-independent thermal properties. The method of solution is the standard separation of variables method. Duhamel integral is used for applying the time-dependent boundary conditions. The presented solution is applied to special case of harmonic heat flux on outer surface.

[1]  A. Moosaie,et al.  Non-Fourier heat conduction in a hollow sphere with periodic surface heat flux , 2009 .

[2]  A. Moosaie Axisymmetric non-Fourier temperature field in a hollow sphere , 2009 .

[3]  M. Babaei,et al.  Hyperbolic Heat Conduction in a Functionally Graded Hollow Sphere , 2008 .

[4]  A. Moosaie Non-Fourier heat conduction in a finite medium subjected to arbitrary periodic surface disturbance , 2007 .

[5]  A. Moosaie Non-Fourier heat conduction in a finite medium subjected to arbitrary non-periodic surface disturbance ☆ , 2007 .

[6]  H. Hassan,et al.  Transient Heat Conduction for Micro Sphere , 2007 .

[7]  F. Jiang Solution and analysis of hyperbolic heat propagation in hollow spherical objects , 2006 .

[8]  L. Malinowski,et al.  An analytical solution of the hyperbolic heat conduction equation for the case of a finite medium symmetrically heated on both sides , 2006 .

[9]  D. Tang,et al.  Non-fourier heat condution behavior in finite mediums under pulse surface heating , 2000 .

[10]  B. Abdel-Hamid Modelling non-Fourier heat conduction with periodic thermal oscillation using the finite integral transform , 1999 .

[11]  L. Malinowski,et al.  Hyperbolic heat conduction in the semi-infinite body with the heat source which capacity linearly depends on temperature , 1998 .

[12]  D. Tang,et al.  Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance—II. Another form of solution , 1996 .

[13]  D. Tang,et al.  Analytical solution of non-fourier temperature response in a finite medium under laser-pulse heating , 1996 .

[14]  D. Tang,et al.  Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance , 1996 .

[15]  V. Majerník,et al.  Non-Fourier propagation of heat pulses in finite medium , 1988 .

[16]  K. J. Baumeister,et al.  Discussion: “Hyperbolic Heat-Conduction Equation—A Solution for the Semi-Infinite Body Problem” (Baumeister, K. J., and Hamill, T. D., 1969, ASME J. Heat Transfer, 91, pp. 543–548) , 1971 .

[17]  K. J. Baumeister,et al.  Hyperbolic Heat-Conduction Equation—A Solution for the Semi-Infinite Body Problem , 1969 .

[18]  Vedat S. Arpaci,et al.  Conduction Heat Transfer , 2002 .