CoMe-KE: A New Transformers Based Approach for Knowledge Extraction in Conflict and Mediation Domain

Knowledge discovery and extraction approaches attract special attention across industries and areas moving toward the 5V Era. In the political and social sciences, scholars and governments dedicate considerable resources to develop intelligent systems for monitoring, analyzing and predicting conflicts and affairs involving political entities across the globe. Such systems rely on background knowledge from external knowledge bases, that conflict experts commonly maintain manually. The high costs and extensive human efforts associated with updating and extending these repositories often compromise their correctness of. Here we introduce CoMe-KE (Conflict and Mediation Knowledge Extractor) to extend automatically knowledge bases about conflict and mediation events. We explore state-of-the-art natural language models to discover new political entities, their roles and status from news. We propose a distant supervised method and propose an innovative zero-shot approach based on a dynamic hypothesis procedure. Our methods leverage pre-trained models through transfer learning techniques to obtain excellent results with no need for a labeled data. Finally, we demonstrate the superiority of our method through a comprehensive set of experiments involving two study cases in the social sciences domain. CoMe-KE significantly outperforms the existing baseline, with (on average) double of the performance retrieving new political entities.