Diruthenium Complexes of p-Benzoquinone-Imidazole Hybrid Ligands: Innocent or Noninnocent Behavior of the Quinone Moiety.

After double deprotonation, 2,6-diaryl-p-benzoquinonodiimidazoles (aryl=4-tolyl (I) or 2-pyridyl (II)) were shown to bridge two [Ru(bpy)2 ]2+ (bpy=2,2'-bipyridine) complex fragments through the imidazolate N and p-quinone O (I→12+ ) or through the imidazolate N and pyridyl N donor atoms (II→22+ ). Characterization by crystal structure analysis, 1 H/13 C NMR spectroscopy, cyclic and differential pulse voltammetry, and spectroelectrochemistry (UV/Vis/NIR, IR, EPR) in combination with TD-DFT calculations revealed surprisingly different electronic structures for redox systems 1n and 2n . Whereas 12+ is reduced to a radical complex with considerable semiquinone character, the reduction of 22+ with its exclusive N coordination exhibits little spin on the now redox-innocent quinone moiety, compared with the electron uptake by the pyridyl-imidazolate chelating site. The first of two close-lying oxidation processes occurs at the bridging heteroquinone ligand, whereas the second oxidation is partly (14+ ) or predominantly (24+ ) centered on the metal atoms.

[1]  Hannah U. Holtkamp,et al.  Quinoline-para-quinones and metals: coordination-assisted formation of quinoline-ortho-quinones. , 2018, Chemical communications.

[2]  W. Kaim,et al.  Non-innocence and mixed valency in tri- and tetranuclear ruthenium complexes of a heteroquinone bridging ligand. , 2017, Dalton transactions.

[3]  T. Akutagawa,et al.  Electronic and crystal structures of 1,2,3-triazole-fused p-benzoquinone derivatives , 2017 .

[4]  W. Kaim,et al.  Isomeric Diruthenium Complexes of a Heterocyclic and Quinonoid Bridging Ligand: Valence and Spin Alternatives for the Metal/Ligand/Metal Arrangement. , 2016, Inorganic chemistry.

[5]  S. Kitagawa,et al.  Asymmetric dimerization of aniline-ruthenium-dioxolene complex driven by stepwise PCET. , 2016, Dalton transactions.

[6]  W. Kaim,et al.  1,5-Diamido-9,10-anthraquinone, a Centrosymmetric Redox-Active Bridge with Two Coupled β-Ketiminato Chelate Functions: Symmetric and Asymmetric Diruthenium Complexes. , 2016, Inorganic chemistry.

[7]  W. Kaim,et al.  Analysis of Redox Series of Unsymmetrical 1,4-Diamido-9,10-anthraquinone-Bridged Diruthenium Compounds. , 2016, Inorganic chemistry.

[8]  R. Manivannan,et al.  Benzoquinone–imidazole hybrids as selective colorimetric sensors for cyanide in aqueous, solid and gas phases , 2015 .

[9]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[10]  B. Sarkar,et al.  Substituent-Induced Reactivity in Quinonoid-Bridged Dinuclear Complexes: Comparison between the Ruthenium and Osmium Systems , 2013 .

[11]  A. Das,et al.  UV-vis-NIR and EPR characterisation of the redox series [MQ(3)](2+,+,0,-,2-), M = Ru or Os, and Q = o-quinone derivative. , 2012, Dalton transactions.

[12]  W. Kaim Concepts for metal complex chromophores absorbing in the near infrared , 2011 .

[13]  W. Kaim,et al.  Manifestations of noninnocent ligand behavior. , 2011, Inorganic chemistry.

[14]  Christian G. Hartinger Isolierung instabiler Benzochinonanaloga durch Koordination an ein [(η5‐C5Me5)Ir]‐Fragment und tumorhemmende Aktivität der resultierenden Komplexe , 2010 .

[15]  C. Hartinger Trapping unstable benzoquinone analogues by coordination to a [(η(5)-C(5)Me(5))Ir] fragment and the anticancer activity of the resulting complexes. , 2010, Angewandte Chemie.

[16]  W. Kaim,et al.  Spectroelectrochemistry: the best of two worlds. , 2009, Chemical Society reviews.

[17]  S. Mobin,et al.  Intramolecular valence and spin interaction in meso and rac diastereomers of a p-quinonoid-bridged diruthenium complex. , 2008, Journal of the American Chemical Society.

[18]  S. Mobin,et al.  Valence-state alternatives in diastereoisomeric complexes [(acac)2Ru(mu-QL)Ru(acac)2]n (QL2- = 1,4-dioxido-9,10-anthraquinone,n = +2, +1, 0, -1, -2). , 2008, Inorganic chemistry.

[19]  W. Kaim,et al.  Unkonventionelle gemischtvalente Komplexe des Rutheniums und Osmiums , 2007 .

[20]  W. Kaim,et al.  Unconventional mixed-valent complexes of ruthenium and osmium. , 2007, Angewandte Chemie.

[21]  S. Fukuzumi,et al.  Binding modes in metal ion complexes of quinones and semiquinone radical anions: electron-transfer reactivity. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  M. Haga,et al.  Molecular design of a proton-induced molecular switch based on rod-shaped Ru dinuclear complexes with bis-tridentate 2,6-bis(benzimidazol-2-yl)pyridine derivatives , 2003 .

[23]  Giovanni Scalmani,et al.  Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model , 2003, J. Comput. Chem..

[24]  Vincenzo Barone,et al.  Time-dependent density functional theory for molecules in liquid solutions , 2001 .

[25]  M. Zerner,et al.  Binuclear 1,2,4,5-tetraimino-3,6-diketocyclohexane bis[bis(bipyridine)ruthenium(II)] redox series. , 2000, Inorganic chemistry.

[26]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[27]  Dennis R. Salahub,et al.  Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold , 1998 .

[28]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[29]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[30]  M. Ward A Dinuclear Ruthenium(II) Complex with the Dianion of 2,5-Dihydroxy-1,4-benzoquinone as Bridging Ligand. Redox, Spectroscopic, and Mixed-Valence Properties. , 1996, Inorganic chemistry.

[31]  W. Kaim,et al.  Electrochemistry and spectroelectrochemistry (EPR, UV-visible-near-IR) of platinum(II) 2,2'-bipyridine and ring-metalated bipyridine complexes: PtII(L-) and PtI(L-) but not PtI(L) , 1992 .

[32]  W. Kaim,et al.  Complexes of folic acid, lumiflavin and riboflavin with bis(2, 2′-bipyridine)ruthenium(II). Facilitated formation of flavosemiquinone complexes and substantial decrease of pKa(NH) , 1992 .

[33]  M. Daněk,et al.  Simple construction of an infrared optically transparent thin-layer electrochemical cell: Applications to the redox reactions of ferrocene, Mn2(CO)10 and Mn(CO)3(3,5-di-t-butyl-catecholate)− , 1991 .

[34]  Kenji,et al.  Proton-Induced Switching of Metal-Metal Interactions in Dinuclear Ruthenium and Osmium Complexes Bridged by 2,2'-Bis(2-pyridyl) Bibenzimidazole (bpbimH_2). , 1991 .

[35]  A. Bond,et al.  Electrochemistry of symmetrical and asymmetrical dinuclear ruthenium, osmium, and mixed-metal 2,2'-bipyridine complexes bridged by 2,2'-bibenzimidazolate , 1991 .

[36]  M. Haga,et al.  Comparative studies on charge distribution for the ruthenium and osmium quinone complexes [M(bpy)2(quinone)]n (M = Ru, Os; n = 0, +1, +2) , 1990 .

[37]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[38]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[39]  S. Ernst,et al.  Energy level tailoring in ruthenium(II) polyazine complexes based on calculated and experimental ligand properties , 1989 .

[40]  S. Ernst,et al.  Stable binuclear o- and p-semiquinone complexes of [Ru(bpy)2]2+. Radical ion versus mixed-valence dimer formulation , 1989 .

[41]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[42]  M. Haga,et al.  Binuclear complexes of ruthenium and osmium bridged by 2,2'-bibenzimidazolate: preparation, electrochemistry, and formation of mixed-valence complexes , 1987 .

[43]  G. Karayannidis,et al.  Use of Aromatic Dialdehydes in the Preparation of Poly( p-benzoquinono) diimidazoles , 1987 .

[44]  A. Lever,et al.  Synthesis, characterization, and charge distribution of bis(4-tert-butylpyridine)bis(3,5-di-tert-butylquinone)ruthenium , 1986 .

[45]  A. Lever,et al.  Catechol-quinone redox series involving bis(bipyridine)ruthenium(II) and tetrakis(pyridine)ruthenium(II) , 1986 .

[46]  Hermann Stoll,et al.  A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds , 1982 .

[47]  Richard J. Sundberg,et al.  Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems , 1974 .

[48]  W. Kaim The Shrinking World of Innocent Ligands: Conventionaland Non‐Conventional Redox‐Active Ligands , 2012 .

[49]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[50]  W. Kaim,et al.  Ruthenium(II) coordination to a model for the topasemiquinone cofactor of amine oxidases. Resolution of 1H and 99,101Ru EPR hyperfine structure , 1993 .

[51]  W. Kaim,et al.  EPR and absorption spectra of singly reduced mono- and dinuclear diorganoplatinum complexes of heterocyclic .alpha.-diimines , 1992 .

[52]  S. Ernst,et al.  ESR of homo- and heteroleptic mono- and dinuclear tris(.alpha.-diimine)ruthenium radical complexes , 1990 .

[53]  W. Kaim,et al.  Ambident Behavior of the “New Vitamin” Methoxatin (Cofactor PQQ) towards Metals: Coordinative Stabilization of the Pyrrolide Form and the Semiquinone Form , 1990 .

[54]  W. Kaim,et al.  Ambidentes Verhalten des „neuen Vitamins”︁ Methoxatin (Cofaktor PQQ) gegenüber Metallen: Koordinative Stabilisierung der Pyrrolid‐ und der Semichinon‐Form , 1990 .

[55]  M. Haga,et al.  Synthesis and electrochemical properties of mononuclear and binuclear ruthenium complexes containing 2,2′-bibenzimidazole , 1980 .

[56]  B. P. Sullivan,et al.  Mixed phosphine 2,2'-bipyridine complexes of ruthenium , 1978 .