Pattern Recognition Assisted Infrared Library Searching

Pattern recognition methods have been used to develop search prefilters for infrared (IR) library searching. A two-step procedure has been employed. First, the wavelet packet tree is used to decompose each spectrum into wavelet coefficients that represent both the high and low frequency components of the signal. Second, a genetic algorithm for pattern recognition analysis is used to identify wavelet coefficients characteristic of functional group. Even in challenging trials involving carboxylic acids, compounds that possess both carbonyl and hydroxyl functionalities can be readily differentiated from carboxylic acids. The proposed search prefilters allow for the use of more sophisticated and correspondingly more time-consuming algorithms in IR spectral library matching because the size of the library can be culled down for a specific match using information from the search prefilter about the presence or absence of specific functional groups in the unknown.

[1]  Kurt Varmuza,et al.  Pattern recognition in chemistry , 1980 .

[2]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[3]  James S. Walker,et al.  A Primer on Wavelets and Their Scientific Applications , 1999 .

[4]  J. Edward Jackson,et al.  A User's Guide to Principal Components: Jackson/User's Guide to Principal Components , 2004 .

[5]  R. Anderegg,et al.  Selective reduction of infrared data , 1987 .

[6]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[7]  Barry K. Lavine,et al.  Raman Spectroscopy and Genetic Algorithms for the Classification of Wood Types , 2001 .

[8]  Bruce R. Kowalski,et al.  31 Pattern recognition in chemistry , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[9]  S. N. Sivanandam,et al.  Introduction to genetic algorithms , 2007 .

[10]  Barry K. Lavine,et al.  One stop shopping: feature selection, classification and prediction in a single step , 2011 .

[11]  Thomas L. Isenhour,et al.  Infrared Library Search on Principal-Component-Analyzed Fourier-Transformed Absorption Spectra , 1987 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Barry K Lavine,et al.  Machine learning based pattern recognition applied to microarray data. , 2004, Combinatorial chemistry & high throughput screening.

[14]  I. Jolliffe Principal Component Analysis , 2002 .

[15]  A. J. Panshin,et al.  Textbook of wood technology : structure, identification, properties, and uses of the commercial woods of the United States and Canada , 1980 .

[16]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .

[17]  B K Lavine,et al.  Source identification of underground fuel spills by solid-phase microextraction/high-resolution gas chromatography/genetic algorithms. , 2000, Analytical chemistry.

[18]  Junbin Gao,et al.  Chemometrics: From Basics to Wavelet Transform , 2004 .

[19]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[20]  H. Woodruff,et al.  Novel Advances in Pattern Recognition and Knowledge-Based Methods in Infrared Spectroscopy , 1987 .

[21]  Stephen R. Lowry,et al.  A Comparison of Two Discriminant Functions for Classifying Binary Infrared Data , 1975 .

[22]  S. Wold,et al.  SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy , 1977 .

[23]  B. K. Lavine,et al.  Multivariate Approaches to Classification using Genetic Algorithms , 2009 .

[24]  Peter C. Jurs,et al.  Pattern recognition studies of complex chromatographic data sets , 1986 .

[25]  A. J. Moores,et al.  Genetic algorithms for spectral pattern recognition , 2002 .

[26]  Yachao Zhang,et al.  Detection and identification of bacteria using antibiotic susceptibility and a multi-array electrochemical sensor with pattern recognition. , 2007, Biosensors & bioelectronics.

[27]  G. Matolcsy,et al.  Pattern recognition applied to vapour-phase infrared spectra , 1983 .

[28]  Silvana Andreescu,et al.  Multiarray sensors with pattern recognition for the detection, classification, and differentiation of bacteria at subspecies and strain levels. , 2005, Analytical chemistry.

[29]  Kyoji Kawagoe,et al.  A similarity search method of time series data with combination of Fourier and wavelet transforms , 2002, Proceedings Ninth International Symposium on Temporal Representation and Reasoning.

[30]  A. J. Moores,et al.  Innovative genetic algorithms for chemoinformatics , 2002 .

[31]  Barry K. Lavine,et al.  Genetic algorithms for pattern recognition analysis and fusion of sensor data , 1999, Optics East.

[32]  G. Downey,et al.  Mid-infrared spectroscopy coupled with chemometrics: a tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships - a review. , 2010, Chemical reviews.

[33]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[34]  Stephen R. Lowry,et al.  Data base development and search algorithms for automated infrared spectral identification , 1985, J. Chem. Inf. Comput. Sci..

[35]  Donald S. Frankel,et al.  Pattern recognition of Fourier transform infrared spectra of organic compounds , 1984 .

[36]  Barry K. Lavine,et al.  AUTHENTICATION OF FUEL SPILL STANDARDS USING GAS CHROMATOGRAPHY/PATTERN RECOGNITION TECHNIQUES , 2001 .

[37]  Mike James,et al.  Classification Algorithms , 1986, Encyclopedia of Machine Learning and Data Mining.

[38]  Barbara Hubbard,et al.  The World According to Wavelets , 1996 .

[39]  Nikhil Mirjankar,et al.  Pattern recognition analysis of differential mobility spectra with classification by chemical family. , 2006, Analytica chimica acta.

[40]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[41]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[42]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[43]  Gene H. Golub,et al.  Matrix computations , 1983 .

[44]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[45]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[46]  E. Oja,et al.  Independent Component Analysis , 2013 .

[47]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .