From a Large-Deviations Principle to the Wasserstein Gradient Flow: A New Micro-Macro Passage

We study the connection between a system of many independent Brownian particles on one hand and the deterministic diffusion equation on the other. For a fixed time step h > 0, a large-deviations rate functional Jh characterizes the behaviour of the particle system at t = h in terms of the initial distribution at t = 0. For the diffusion equation, a single step in the time-discretized entropy-Wasserstein gradient flow is characterized by the minimization of a functional Kh. We establish a new connection between these systems by proving that Jh and Kh are equal up to second order in h as h → 0. This result gives a microscopic explanation of the origin of the entropy-Wasserstein gradient flow formulation of the diffusion equation. Simultaneously, the limit passage presented here gives a physically natural description of the underlying particle system by describing it as an entropic gradient flow.

[1]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[2]  S. A. Sherman,et al.  Providence , 1906 .

[3]  A. Beurling,et al.  An Automorphism of Product Measures , 1960 .

[4]  V. A. Statulevičius,et al.  On large deviations , 1966 .

[5]  F. Olver Asymptotics and Special Functions , 1974 .

[6]  I. Csiszár Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .

[7]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[8]  Large deviations from the hydrodynamical limit for a system of independent brownian particles , 1990 .

[9]  A. Masi,et al.  Mathematical Methods for Hydrodynamic Limits , 1991 .

[10]  L. Evans Measure theory and fine properties of functions , 1992 .

[11]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[12]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[13]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[14]  D. Kinderlehrer,et al.  Free energy and the Fokker-Planck equation , 1997 .

[15]  Brian Berkowitz,et al.  Theory of anomalous chemical transport in random fracture networks , 1998 .

[16]  C. Landim,et al.  Scaling Limits of Interacting Particle Systems , 1998 .

[17]  Felix Otto,et al.  Lubrication approximation with prescribed nonzero contact anggle , 1998 .

[18]  Chao-Cheng Huang A variational principle for the Kramers equation with unbounded external forces , 2000 .

[19]  Brian Berkowitz,et al.  Anomalous transport in laboratory‐scale, heterogeneous porous media , 2000 .

[20]  R. Jordan,et al.  Variational formulations for Vlasov–Poisson–Fokker–Planck systems , 2000 .

[21]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[22]  Lorenzo Giacomelli,et al.  Variatonal formulation for the lubrication approximation of the Hele-Shaw flow , 2001 .

[23]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[24]  Subdiffusion and the cage effect studied near the colloidal glass transition , 2001, cond-mat/0111073.

[25]  C. Villani Topics in Optimal Transportation , 2003 .

[26]  Karl B Glasner,et al.  A diffuse interface approach to Hele-Shaw flow , 2003 .

[27]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[28]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[29]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[30]  J. Yeh,et al.  Real Analysis: Theory of Measure and Integration , 2006 .

[31]  A large deviation approach to optimal transport , 2007, 0710.1461.

[32]  M. Peletier,et al.  Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows , 2008, 0812.1269.

[33]  C. Villani Optimal Transport: Old and New , 2008 .

[34]  Giuseppe Savaré,et al.  The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation , 2009 .

[35]  R. McCann,et al.  A Family of Nonlinear Fourth Order Equations of Gradient Flow Type , 2009, 0901.0540.

[36]  S. Varadhan,et al.  Large deviations , 2019, Graduate Studies in Mathematics.