From a Large-Deviations Principle to the Wasserstein Gradient Flow: A New Micro-Macro Passage
暂无分享,去创建一个
[1] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[2] S. A. Sherman,et al. Providence , 1906 .
[3] A. Beurling,et al. An Automorphism of Product Measures , 1960 .
[4] V. A. Statulevičius,et al. On large deviations , 1966 .
[5] F. Olver. Asymptotics and Special Functions , 1974 .
[6] I. Csiszár. Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .
[7] Hans-Otto Georgii,et al. Gibbs Measures and Phase Transitions , 1988 .
[8] Large deviations from the hydrodynamical limit for a system of independent brownian particles , 1990 .
[9] A. Masi,et al. Mathematical Methods for Hydrodynamic Limits , 1991 .
[10] L. Evans. Measure theory and fine properties of functions , 1992 .
[11] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[12] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[13] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[14] D. Kinderlehrer,et al. Free energy and the Fokker-Planck equation , 1997 .
[15] Brian Berkowitz,et al. Theory of anomalous chemical transport in random fracture networks , 1998 .
[16] C. Landim,et al. Scaling Limits of Interacting Particle Systems , 1998 .
[17] Felix Otto,et al. Lubrication approximation with prescribed nonzero contact anggle , 1998 .
[18] Chao-Cheng Huang. A variational principle for the Kramers equation with unbounded external forces , 2000 .
[19] Brian Berkowitz,et al. Anomalous transport in laboratory‐scale, heterogeneous porous media , 2000 .
[20] R. Jordan,et al. Variational formulations for Vlasov–Poisson–Fokker–Planck systems , 2000 .
[21] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[22] Lorenzo Giacomelli,et al. Variatonal formulation for the lubrication approximation of the Hele-Shaw flow , 2001 .
[23] Andrea Braides. Gamma-Convergence for Beginners , 2002 .
[24] Subdiffusion and the cage effect studied near the colloidal glass transition , 2001, cond-mat/0111073.
[25] C. Villani. Topics in Optimal Transportation , 2003 .
[26] Karl B Glasner,et al. A diffuse interface approach to Hele-Shaw flow , 2003 .
[27] Michael Frazier,et al. Studies in Advanced Mathematics , 2004 .
[28] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[29] C. Villani,et al. Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .
[30] J. Yeh,et al. Real Analysis: Theory of Measure and Integration , 2006 .
[31] A large deviation approach to optimal transport , 2007, 0710.1461.
[32] M. Peletier,et al. Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows , 2008, 0812.1269.
[33] C. Villani. Optimal Transport: Old and New , 2008 .
[34] Giuseppe Savaré,et al. The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation , 2009 .
[35] R. McCann,et al. A Family of Nonlinear Fourth Order Equations of Gradient Flow Type , 2009, 0901.0540.
[36] S. Varadhan,et al. Large deviations , 2019, Graduate Studies in Mathematics.