A phase-field damage model based on evolving microstructure

In this paper we discuss a damage model that is based on microstructure evolution. In the context of evolutionary Γ-convergence we derive a corresponding effective macroscopic model. In this model, the damage state of a given material point is related to a unit cell problem incorporating a specific microscopic defect. The size and shape of this underlying microscopic defect is determined by the evolution. According to the small intrinsic length scale inherent to the original models a numerical simulation of damage progression in a device of realistic size is hopeless. Due to the scale separation in the effective model, its numerical treatment seems promising.

[1]  P. Donato,et al.  An introduction to homogenization , 2000 .

[2]  A. Mielke Differential, Energetic, and Metric Formulations for Rate-Independent Processes , 2011 .

[3]  Alexander Mielke,et al.  Existence results for energetic models for rate-independent systems , 2005 .

[4]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[5]  Gilles A. Francfort,et al.  Stable damage evolution in a brittle continuous medium , 1993 .

[7]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[8]  H. Alt Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .

[9]  Doina Cioranescu,et al.  Periodic unfolding and homogenization , 2002 .

[10]  A. Mielke,et al.  On rate-independent hysteresis models , 2004 .

[11]  Adriana Garroni,et al.  Threshold-based Quasi-static Brittle Damage Evolution , 2009 .

[12]  Dorothee Knees,et al.  Homogenization of elliptic systems with non-periodic, state-dependent coefficients , 2013, Asymptot. Anal..

[13]  H. Hanke Homogenization in gradient plasticity , 2011 .

[14]  G. Allaire Homogenization and two-scale convergence , 1992 .

[15]  Ulisse Stefanelli,et al.  Γ-limits and relaxations for rate-independent evolutionary problems , 2008 .

[16]  Some properties of two-scale convergence , 2004 .

[17]  Alexander Mielke,et al.  Two-Scale Homogenization for Evolutionary Variational Inequalities via the Energetic Formulation , 2007, SIAM J. Math. Anal..

[18]  F. Theil,et al.  A mathematical model for rate–independent phase transformations with hysteresis∗ , 2011 .

[19]  A. Buffa,et al.  Compact embeddings of broken Sobolev spaces and applications , 2009 .

[20]  A. Mielke,et al.  Damage of nonlinearly elastic materials at small strain - Existence and regularity results - , 2010 .

[21]  Gilles A. Francfort,et al.  A Variational View of Partial Brittle Damage Evolution , 2006 .