Preparation and characterization of a novel porous titanium scaffold with 3D hierarchical porous structures

[1]  Peter X Ma,et al.  Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. , 2007, Biomaterials.

[2]  Tadashi Kokubo,et al.  Mechanical properties and osteoconductivity of porous bioactive titanium. , 2005, Biomaterials.

[3]  D. Kaplan,et al.  Porosity of 3D biomaterial scaffolds and osteogenesis. , 2005, Biomaterials.

[4]  U. Holzwarth,et al.  Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. , 2004, Biomaterials.

[5]  L Catherine Brinson,et al.  Mechanics considerations for microporous titanium as an orthopedic implant material. , 2004, Journal of biomedical materials research. Part A.

[6]  J. Tuukkanen,et al.  Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. , 2003, Biomaterials.

[7]  Robert E Guldberg,et al.  Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. , 2003, Biomaterials.

[8]  J. Fisher,et al.  Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. , 2002, Journal of biomedical materials research.

[9]  Mamoru Mabuchi,et al.  Processing of biocompatible porous Ti and Mg , 2001 .

[10]  Jeffrey A. Hubbell,et al.  Functional biomaterials : Design of novel biomaterials : Biomaterials , 2001 .

[11]  H. Takita,et al.  Geometry of Carriers Controlling Phenotypic Expression in BMP-Induced Osteogenesis and Chondrogenesis , 2001, The Journal of bone and joint surgery. American volume.

[12]  T. Webster,et al.  Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. , 2000, Journal of biomedical materials research.

[13]  W R Walsh,et al.  Morphometric and mechanical evaluation of titanium implant integration: comparison of five surface structures. , 2000, Journal of biomedical materials research.

[14]  Linshu Liu,et al.  An osteoconductive collagen/hyaluronate matrix for bone regeneration. , 1999, Biomaterials.

[15]  T. Bateman,et al.  Effect of nitinol implant porosity on cranial bone ingrowth and apposition after 6 weeks. , 1999, Journal of biomedical materials research.

[16]  Matthias Epple,et al.  Hierarchically structured polyglycolide - a biomaterial mimicking natural bone , 1998 .

[17]  I Gotman,et al.  Characteristics of metals used in implants. , 1997, Journal of endourology.

[18]  H. Takita,et al.  Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. , 1997, Journal of biochemistry.

[19]  Kathy K. Wang The use of titanium for medical applications in the USA , 1996 .

[20]  Tadashi Kokubo,et al.  Spontaneous Formation of Bonelike Apatite Layer on Chemically Treated Titanium Metals , 1996 .

[21]  W. Head,et al.  Titanium as the material of choice for cementless femoral components in total hip arthroplasty. , 1995, Clinical orthopaedics and related research.

[22]  R. Noort Titanium: The implant material of today , 1987 .

[23]  G. Song,et al.  Fabrication and characterization of nano composite scaffold of poly(l-lactic acid)/hydroxyapatite , 2010, Journal of materials science. Materials in medicine.

[24]  T. Albrektsson,et al.  Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. , 2002, Biomaterials.

[25]  Marcus Textor,et al.  Titanium in Medicine : material science, surface science, engineering, biological responses and medical applications , 2001 .