Matrix Factorization Approach Based on Temporal Hierarchical Dirichlet Process

User-based collaborative filtering algorithms generally rely on the users' stationary preferences, yet user preferences in real world are seldom stationary. User preference patterns may have the time-evolving statistical properties in many social contexts. Motivated by this phenomenon, we propose a temporal collaborative filtering approach based on temporal Hierarchical Dirichlet Process tHDP. This approach can capture the density changes on the time-evolving datasets. Experiments on large real world datasets demonstrate the superiority of our proposed approach.

[1]  Xindong Wu,et al.  Cross-Domain Collaborative Filtering over Time , 2011, IJCAI.

[2]  Benjamin M. Marlin,et al.  Collaborative Filtering: A Machine Learning Perspective , 2004 .

[3]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[4]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[5]  Fillia Makedon,et al.  Learning from Incomplete Ratings Using Non-negative Matrix Factorization , 2006, SDM.

[6]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[7]  Aurelie C. Lozano,et al.  Multi-relational learning via hierarchical nonparametric Bayesian collective matrix factorization , 2015 .

[8]  Arindam Banerjee,et al.  Bayesian Co-clustering , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[9]  Hai Jin,et al.  Human mobility synthesis using matrix and tensor factorizations , 2015, Inf. Fusion.

[10]  Andrzej Cichocki,et al.  Two Efficient Algorithms for Approximately Orthogonal Nonnegative Matrix Factorization , 2015, IEEE Signal Processing Letters.

[11]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[12]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[13]  Xi Chen,et al.  Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization , 2010, SDM.

[14]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[15]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[16]  Edward Y. Chang,et al.  Collaborative filtering for orkut communities: discovery of user latent behavior , 2009, WWW '09.

[17]  Gang Chen,et al.  Collaborative Filtering Using Orthogonal Nonnegative Matrix Tri-factorization , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[18]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[19]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.