The XXL Survey

High-mass clusters at low redshifts have been intensively studied at various wavelengths. However, while more distant objects at lower masses constitute the bulk population of future surveys, their physical state remain poorly explored to date. In this paper, we present resolved observations of the Sunyaev-Zel’dovich (SZ) effect, obtained with the NIKA2 camera, towards the cluster of galaxies XLSSC 102, a relatively low-mass system (M500 ∼ 2 × 1014 M⊙) atz = 0.97 detected from the XXL survey. We combine NIKA2 SZ data,XMM-NewtonX-ray data, and Megacam optical data to explore, respectively, the spatial distribution of the gas electron pressure, the gas density, and the galaxies themselves. We find significant offsets between the X-ray peak, the SZ peak, the brightest cluster galaxy, and the peak of galaxy density. Additionally, the galaxy distribution and the gas present elongated morphologies. This is interpreted as the sign of a recent major merging event, which induced a local boost of the gas pressure towards the north of XLSSC 102 and stripped the gas out of the galaxy group. The NIKA2 data are also combined with XXL data to construct the thermodynamic profiles of XLSSC 102, obtaining relatively tight constraints up to about ∼r500, and revealing properties that are typical of disturbed systems. We also explore the impact of the cluster centre definition and the implication of local pressure substructure on the recovered profiles. Finally, we derive the global properties of XLSSC 102 and compare them to those of high-mass-and-low-redshift systems, finding no strong evidence for non-standard evolution. We also use scaling relations to obtain alternative mass estimates from our profiles. The variation between these different mass estimates reflects the difficulty to accurately measure the mass of low-mass clusters atz ∼ 1, especially with low signal-to-noise ratio data and for a disturbed system. However, it also highlights the strength of resolved SZ observations alone and in combination with survey-like X-ray data. This is promising for the study of high redshift clusters from the combination of eROSITA and high resolution SZ instruments and will complement the new generation of optical surveys from facilities such as LSST andEuclid.

[1]  P. Mauskopf,et al.  Calibration and performance of the NIKA2 camera at the IRAM 30-m Telescope , 2020 .

[2]  M. Sereno,et al.  Weak-lensing Analysis of X-Ray-selected XXL Galaxy Groups and Clusters with Subaru HSC Data , 2019, The Astrophysical Journal.

[3]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[4]  C. Benoist,et al.  The XXL Survey , 2017, Astronomy & Astrophysics.

[5]  A. Hopkins,et al.  The XXL Survey , 2018, Astronomy & Astrophysics.

[6]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[7]  E. Koulouridis,et al.  High density of active galactic nuclei in the outskirts of distant galaxy clusters , 2019, Astronomy & Astrophysics.

[8]  A. Biviano,et al.  The Galaxy Cluster Mass Scale and Its Impact on Cosmological Constraints from the Cluster Population , 2019, Space Science Reviews.

[9]  P. Mazzotta,et al.  Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample , 2018, Astronomy & Astrophysics.

[10]  P. Ade,et al.  First Sunyaev–Zel’dovich mapping with the NIKA2 camera: Implication of cluster substructures for the pressure profile and mass estimate , 2017, Astronomy & Astrophysics.

[11]  S. Bamford,et al.  Galaxy And Mass Assembly: The G02 field, Herschel-ATLAS target selection and data release 3 , 2017, 1711.09139.

[12]  G. Zamorani,et al.  The clustering and bias of radio-selected AGN and star-forming galaxies in the COSMOS field , 2017, 1711.05201.

[13]  A. Coil,et al.  Spatial clustering and halo occupation distribution modelling of local AGN via cross-correlation measurements with 2MASS galaxies , 2017, 1710.05638.

[14]  David N. Spergel,et al.  The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel’dovich Effect Selected Cluster Catalog , 2017, 1709.05600.

[15]  Enzo Pascale,et al.  The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope , 2017, 1707.00908.

[16]  Satoshi Miyazaki,et al.  The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey , 2017, 1705.06745.

[17]  M. Plionis,et al.  Comparison of the linear bias models in the light of the Dark Energy Survey , 2017, 1710.05648.

[18]  M. Petris,et al.  Morphological estimators on Sunyaev–Zel'dovich maps of MUSIC clusters of galaxies , 2017, 1708.03325.

[19]  Satoshi Miyazaki,et al.  Photometric Redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1 , 2017, 1704.05988.

[20]  M. Rossetti,et al.  The cool-core state of Planck SZ-selected clusters versus X-ray-selected samples: evidence for cool-core bias , 2017, 1702.06961.

[21]  O. Ilbert,et al.  The clustering properties of radio-selected AGN and star-forming galaxies up to redshifts z ∼ 3 , 2016, 1606.08286.

[22]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2) , 2016, 1611.07048.

[23]  K. Schawinski,et al.  THE CHANDRA COSMOS LEGACY SURVEY: CLUSTERING OF X-RAY-SELECTED AGNs AT 2.9 ≤ z ≤ 5.5 USING PHOTOMETRIC REDSHIFT PROBABILITY DISTRIBUTION FUNCTIONS , 2016 .

[24]  P. Schneider,et al.  HIFLUGCS: X-ray luminosity -- dynamical mass relation and its implications for mass calibrations with the SPIDERS and 4MOST surveys , 2016, 1608.06585.

[25]  S. Paltani,et al.  The XMM Cluster Outskirts Project (X-COP): Physical conditions of Abell 2142 up to the virial radius , 2016, 1606.05657.

[26]  S. Paltani,et al.  The XMM cluster outskirts project (X-COP) , 2016, 1611.05051.

[27]  S. Paltani,et al.  The XXL Survey - VI. The 1000 brightest X-ray point sources , 2016, 1603.03240.

[28]  M. Menzel,et al.  The clustering amplitude of X-ray-selected AGN at z ∼ 0.8: evidence for a negative dependence on accretion luminosity , 2016, 1602.01856.

[29]  C. Vescovi,et al.  NIKEL_AMC: readout electronics for the NIKA2 experiment , 2016, 1602.01288.

[30]  M. Meneghetti,et al.  THE MORPHOLOGIES AND ALIGNMENTS OF GAS, MASS, AND THE CENTRAL GALAXIES OF CLASH CLUSTERS OF GALAXIES , 2016, 1601.04947.

[31]  F. Menanteau,et al.  The XXL Survey XIV. AAOmega Redshifts for the Southern XXL Field , 2015, Publications of the Astronomical Society of Australia.

[32]  M. Bersanelli,et al.  Measuring the dynamical state of Planck SZ-selected clusters: X-ray peak – BCG offset , 2015, 1512.00410.

[33]  Klaus Dolag,et al.  Baryon impact on the halo mass function: Fitting formulae and implications for cluster cosmology , 2015, 1502.07357.

[34]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[35]  B. Altieri,et al.  The XXL Survey: XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters , 2015, 1512.04342.

[36]  N. Clerc,et al.  The XXL Survey - I. Scientific motivations − XMM-Newton observing plan − Follow-up observations and simulation programme , 2015, 1512.04317.

[37]  B. Altieri,et al.  The XXL Survey - II. The bright cluster sample: catalogue and luminosity function , 2015, 1512.04264.

[38]  N. Clerc,et al.  The XXL Survey - IV. Mass-temperature relation of the bright cluster sample , 2015, 1512.03857.

[39]  N. Clerc,et al.  The XXL Survey - III. Luminosity-temperature relation of the bright cluster sample , 2015, 1512.03833.

[40]  S. Paltani,et al.  The XXL Survey XIII. Baryon content of the bright cluster sample , 2015, 1512.03814.

[41]  P. Ade,et al.  High angular resolution Sunyaev-Zel’dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis , 2015, 1510.06674.

[42]  N. Ponthieu,et al.  The NIKA2 Instrument, A Dual-Band Kilopixel KID Array for Millimetric Astronomy , 2015, 1601.02774.

[43]  M. Donahue,et al.  Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel’dovich Effect Observations with MUSTANG and Bolocam. II. Joint Analysis of 14 Clusters , 2015, 1608.03980.

[44]  R. Henderson,et al.  CosmoDM and its application to Pan-STARRS data , 2015, 1506.06912.

[45]  M. Blanton,et al.  PRIMUS + DEEP2: CLUSTERING OF X-RAY, RADIO, AND IR-AGNs AT z ∼ 0.7 , 2015, 1504.06284.

[46]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[47]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[48]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[49]  L. Moscardini,et al.  CoMaLit – II. The scaling relation between mass and Sunyaev–Zel'dovich signal for Planck selected galaxy clusters , 2014, 1407.7869.

[50]  A. Connolly,et al.  Growth of cosmic structure: Probing dark energy beyond expansion , 2013, 1309.5385.

[51]  P. Ade,et al.  Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA ? , 2014, 1410.2808.

[52]  S. Borgani,et al.  TEMPERATURE STRUCTURE OF THE INTRA-CLUSTER MEDIUM FROM SPH AND AMR SIMULATIONS , 2014, 1406.4410.

[53]  Youjun Lu,et al.  OFFSETS BETWEEN THE X-RAY AND THE SUNYAEV–ZEL'DOVICH-EFFECT PEAKS IN MERGING GALAXY CLUSTERS AND THEIR COSMOLOGICAL IMPLICATIONS , 2014, 1406.4019.

[54]  P. Ade,et al.  Performance and calibration of the NIKA camera at the IRAM 30 m telescope , 2014, 1402.0260.

[55]  N. Ponthieu,et al.  First observation of the thermal Sunyaev-Zel’dovich effect with kinetic inductance detectors , 2013, 1310.6237.

[56]  C. A. Oxborrow,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[57]  J. Bock,et al.  A MEASUREMENT OF THE KINETIC SUNYAEV–ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745 , 2013, 1312.3680.

[58]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[59]  H. Hoekstra,et al.  Scaling Relations for Galaxy Clusters: Properties and Evolution , 2013, 1305.3286.

[60]  C. Baugh,et al.  Constraints on black hole fuelling modes from the clustering of X-ray AGN , 2013, 1305.2200.

[61]  E. Pointecouteau,et al.  Mass Profiles of Galaxy Clusters from X-ray Analysis , 2013, 1303.3530.

[62]  Etienne Pointecouteau,et al.  Outskirts of Galaxy Clusters , 2013, Space Science Reviews.

[63]  H. Hoekstra,et al.  JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES , 2012, 1210.3689.

[64]  I. Georgantopoulos,et al.  Clustering, Bias and the Accretion Mode of X-ray selected AGN , 2012, 1209.6460.

[65]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[66]  A. King,et al.  The M - \sigma relation in different environments , 2012, 1208.1380.

[67]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[68]  K. Umetsu,et al.  A MULTI-WAVELENGTH STUDY OF THE SUNYAEV–ZEL'DOVICH EFFECT IN THE TRIPLE-MERGER CLUSTER MACS J0717.5+3745 WITH MUSTANG AND BOLOCAM , 2012, 1205.0052.

[69]  J. Mohr,et al.  THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE , 2012, 1204.1210.

[70]  M. Plionis,et al.  A consistent comparison of bias models using observational data , 2012, 1201.4878.

[71]  D. Alexander,et al.  What drives the growth of black holes , 2011, 1112.1949.

[72]  N. Clerc,et al.  Angular correlation functions of X-ray point-like sources in the full exposure XMM-LSS field , 2011, 1111.5982.

[73]  Annalisa Pillepich,et al.  The X-ray cluster survey with eRosita: forecasts for cosmology, cluster physics and primordial non-Gaussianity , 2011, 1111.6587.

[74]  H. McCracken,et al.  THE XMM-NEWTON WIDE FIELD SURVEY IN THE COSMOS FIELD: REDSHIFT EVOLUTION OF AGN BIAS AND SUBDOMINANT ROLE OF MERGERS IN TRIGGERING MODERATE-LUMINOSITY AGNs AT REDSHIFTS UP TO 2.2 , 2011, 1105.0520.

[75]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[76]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[77]  J. J. A. Baselmans,et al.  A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE , 2011, 1102.0870.

[78]  S. Gwyn,et al.  The CFHT Legacy Survey: stacked images and catalogs , 2011, 1101.1084.

[79]  S. Paltani,et al.  The cool-core bias in X-ray galaxy cluster samples - I. Method and application to HIFLUGCS , 2010, 1011.3302.

[80]  J. ZuHone,et al.  A PARAMETER SPACE EXPLORATION OF GALAXY CLUSTER MERGERS. I. GAS MIXING AND THE GENERATION OF CLUSTER ENTROPY , 2010, 1004.3820.

[81]  C. Baugh,et al.  The evolution of AGN across cosmic time: what is downsizing? , 2010, 1011.5222.

[82]  A. Coil,et al.  THE SPATIAL CLUSTERING OF ROSAT ALL-SKY SURVEY AGNs. II. HALO OCCUPATION DISTRIBUTION MODELING OF THE CROSS-CORRELATION FUNCTION , 2010, 1010.5498.

[83]  D. Eisenstein,et al.  CONSTRAINING HALO OCCUPATION PROPERTIES OF X-RAY ACTIVE GALACTIC NUCLEI USING CLUSTERING OF CHANDRA SOURCES IN THE BOÖTES SURVEY REGION , 2010 .

[84]  N. Clerc,et al.  Precision cosmology with a wide area XMM cluster survey , 2010, 1009.3182.

[85]  V. Springel,et al.  Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters , 2010, 1008.4799.

[86]  S. R. Hildebrandt,et al.  MILCA, a modified internal linear combination algorithm to extract astrophysical emissions from multifrequency sky maps , 2010, 1007.1149.

[87]  P. A. R. Ade,et al.  X-RAY PROPERTIES OF THE FIRST SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTER SAMPLE FROM THE SOUTH POLE TELESCOPE , 2010, 1006.3068.

[88]  A. Coil,et al.  THE SPATIAL CLUSTERING OF ROSAT ALL-SKY SURVEY AGNs. I. THE CROSS-CORRELATION FUNCTION WITH SDSS LUMINOUS RED GALAXIES , 2010, 1002.3598.

[89]  H. Böhringer,et al.  X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories , 2010 .

[90]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[91]  Heinz Andernach,et al.  What is a cool-core cluster? a detailed analysis of the cores of the X-ray flux-limited HIFLUGCS cluster sample , 2009, 0911.0409.

[92]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[93]  G. W. Pratt,et al.  Gas entropy in a representative sample of nearby X-ray galaxy clusters (REXCESS): relationship to gas mass fraction , 2009, 0909.3776.

[94]  L. Moscardini,et al.  The spatial distribution of X-ray selected AGN in the Chandra deep fields: a theoretical perspective , 2009, 0904.0256.

[95]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[96]  B. Weiner,et al.  AEGIS: THE CLUSTERING OF X-RAY ACTIVE GALACTIC NUCLEUS RELATIVE TO GALAXIES AT z ∼ 1 , 2009, 0902.0363.

[97]  Michael E. Anderson,et al.  HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs , 2009, 0901.4121.

[98]  G. Zamorani,et al.  Photometric redshifts for the CFHTLS T0004 deep and wide fields , 2008, 0811.3326.

[99]  L. Guzzo,et al.  The spatial clustering of X-ray selected AGN in the XMM-COSMOS field , 2008, 0810.4769.

[100]  J. Carlstrom,et al.  APPLICATION OF A SELF-SIMILAR PRESSURE PROFILE TO SUNYAEV–ZEL'DOVICH EFFECT DATA FROM GALAXY CLUSTERS , 2008, 0809.5077.

[101]  A. Connolly,et al.  CLUSTERING OF LOW-REDSHIFT (z ⩽ 2.2) QUASARS FROM THE SLOAN DIGITAL SKY SURVEY , 2008, 0903.3230.

[102]  P. Rosati,et al.  Searching for cool core clusters at high redshift , 2008, 0802.1445.

[103]  M. Plionis,et al.  The Halo Mass-Bias Redshift Evolution in the ΛCDM Cosmology , 2008, 0801.3889.

[104]  F. E. Bauer,et al.  Luminosity-dependent X-Ray Active Galactic Nucleus Clustering? , 2008 .

[105]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[106]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[107]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[108]  D. Thompson,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field. III. Optical Identification and Multiwavelength Properties of a Large Sample of X-Ray-Selected Sources , 2006, astro-ph/0612358.

[109]  U. Birmingham,et al.  Deep XMM-Newton and Chandra Observations of Cl J1226.9+3332: A Detailed X-Ray Mass Analysis of a z = 0.89 Galaxy Cluster , 2006, astro-ph/0609690.

[110]  J. Newman,et al.  The DEEP2 Galaxy Redshift Survey: Clustering of Quasars and Galaxies at z = 1 , 2007 .

[111]  J. Mohr,et al.  Evolution of the K-Band Galaxy Cluster Luminosity Function and Scaling Relations , 2006, astro-ph/0609169.

[112]  A. M. Read,et al.  The XMM Large‐Scale Structure survey: the X‐ray pipeline and survey selection function , 2006, astro-ph/0607177.

[113]  D. Nagai,et al.  A New Robust Low-Scatter X-Ray Mass Indicator for Clusters of Galaxies , 2006, astro-ph/0603205.

[114]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[115]  P. Hopkins,et al.  Fueling Low-Level AGN Activity through Stochastic Accretion of Cold Gas , 2006, astro-ph/0603180.

[116]  R. Mushotzky,et al.  Spatial Correlation Function of the Chandra-selected Active Galactic Nuclei , 2006, astro-ph/0601634.

[117]  P. Hopkins,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[118]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[119]  G. Voit Tracing cosmic evolution with clusters of galaxies , 2004, astro-ph/0410173.

[120]  G. Zamorani,et al.  The spatial clustering of X-ray selected AGN and galaxies in the Chandra Deep Field South and North , 2004, astro-ph/0409759.

[121]  Porto,et al.  The 2dF QSO Redshift Survey - XIV. Structure and evolution from the two-point correlation function , 2004, astro-ph/0409314.

[122]  J. Mohr,et al.  K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light , 2004, astro-ph/0408557.

[123]  J. P. Huchra,et al.  Spatial Correlation Function of X-Ray-selected Active Galactic Nuclei , 2004, astro-ph/0408304.

[124]  K. Hayashida,et al.  Properties of the Brightest Cluster Galaxy and Its Host Cluster , 2002, astro-ph/0211282.

[125]  E. Komatsu,et al.  Substructures Revealed by the Sunyaev–Zel’dovich Effect at 150 GHz in a High-Resolution Map of RX J1347$-$1145 , 2000, astro-ph/0006293.

[126]  I. Szapudi,et al.  A Comparison of Estimators for the Two-Point Correlation Function , 1999, The Astrophysical journal.

[127]  S. Nozawa,et al.  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies , 1997, astro-ph/9712289.

[128]  Etienne Pointecouteau,et al.  A Sunyaev-Zeldovich Map of the Massive Core in the Luminous X-Ray Cluster RX J1347–1145 , 1999 .

[129]  M. Birkinshaw,et al.  The Sunyaev-Zel’dovich Effect , 1998, astro-ph/9808050.

[130]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[131]  Jean-Luc Starck,et al.  Structure Detection in Low Intensity X-Ray Images using the Wavelet Transfor M Applied to Galaxy Cluster Cores Analysis , 1997, astro-ph/9707305.

[132]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .

[133]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[134]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[135]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[136]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[137]  Will Saunders,et al.  On the likelihood ratio for source identification. , 1992 .

[138]  Y. Jing,et al.  On the error estimates of correlation functions , 1992 .

[139]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[140]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .

[141]  John A. Peacock,et al.  The Parkes selected regions: powerful radio galaxies and quasars at high redshifts , 1986 .

[142]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[143]  Ya. B. Zel'Dovich,et al.  Microwave background radiation as a probe of the contemporary structure and history of the universe , 1980 .

[144]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[145]  I. Pauliny-Toth,et al.  21 cm flux density measurements of sources from the NRAO-MPIfR 6 cm surveys , 1979 .

[146]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .