Angström coefficient as an indicator of the atmospheric aerosol type for a well-mixed atmospheric boundary layer: Part 1: Model development

The physical and optical properties of an atmospheric aerosol mixture depend on a number of factors. The relative humidity influences the size of hydroscopic particles and the effective radius of an aerosol mixture. In consequence, values of the aerosol extinction, the aerosol optical thickness and the Angstrom coefficient are modified. A similar effect is observed when the aerosol composition changes. A higher content of small aerosol particles causes the effective radius of an aerosol mixture to decrease and the Angstrom coefficient to increase. Both effects are analysed in this paper. The parameters of the size distribution and the type of components used to represent natural atmospheric aerosol mixtures are based on experimental data. The main components are sea-salts (SSA), anthropogenic salts (WS, e.g. NH4HSO4, NH4NO3, (NH4)2SO4), organic carbon (OC) and black carbon (BC). The aerosol optical thickness is modelled using the external mixing approach. The influence of relative humidity on the optical and physical properties of the following aerosol mixtures is investigated: (SSA&WS), (SSA&OC), (SSA&BC), (SSA, WS&OC) and (WS, OC&BC). It is demonstrated that the Angstrom coefficient can be used as a rough indicator of the aerosol type.

[1]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[2]  T. Ackerman,et al.  Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. , 1981, Applied optics.

[3]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[4]  R. Marks,et al.  The influence of sea-salt aerosols on the atmospheric extinction over the Baltic and the north seas , 2000 .

[5]  V. Ramaswamy,et al.  Optical properties and mass concentration of carbonaceous smokes. , 1981, Applied optics.

[6]  C. Sloane Optical properties of aerosols—comparison of measurements with model calculations , 1983 .

[7]  Jean-Pierre Blanchet,et al.  Modeling sea-salt aerosols in the atmosphere 1. Model development , 1997 .

[8]  I. Tang Thermodynamic and optical properties of mixed‐salt aerosols of atmospheric importance , 1997 .

[9]  J. Olszewski,et al.  A method for the continuous measurement of the diffusivity of the natural light field over the sea , 1995 .

[10]  Clyde Orr,et al.  Aerosol size and relative humidity , 1958 .

[11]  C. B. Richardson,et al.  A novel isopiestic measurement of water activity in concentrated and supersaturated lithium halide solutions , 1984 .

[12]  J. Heintzenberg Size-segregated measurements of particulate elemental carbon and aerosol light absorption at remote arctic locations , 1982 .

[13]  R. Hitzenberger,et al.  Modal character of atmospheric black carbon size distributions , 1996 .

[14]  G. Leeuw,et al.  Aerosol optical thickness retrieval over land and water using Global Ozone Monitoring Experiment (GOME) data , 2005 .

[15]  I. Tang,et al.  Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance , 1994 .

[16]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[17]  I. Tang,et al.  An investigation of solute nucleation in levitated solution droplets , 1984 .

[18]  G. de Leeuw,et al.  Empirical relationships between aerosol mass concentrations and Ångström parameter , 2002 .

[19]  Jolanta Kusmierczyk-Michulec,et al.  Ångström coefficient as a tracer of the continental aerosols , 2007, SPIE Optical Engineering + Applications.

[20]  E. Plate Variabilität der Zusammensetzung anorganischer Aerosole, insbesondere der reaktiven Stickstoffverbindungen, in küstennahen Gebieten der Nordsee und Ostsee , 2000 .

[21]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[22]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[23]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[24]  J. Spann,et al.  Measurement of the water cycle in a levitated ammonium sulfate particle , 1984 .

[25]  Michael Schulz,et al.  Aerosol composition and related optical properties in the marine boundary layer over the Baltic Sea , 2001 .

[26]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[27]  I. Tang Chemical and size effects of hygroscopic aerosols on light scattering coefficients , 1996 .

[28]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[29]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[30]  I. Tang,et al.  Phase transformation and growth of aerosol particles composed of mixed salts , 1976 .