On lax epimorphisms and the associated factorization

We study lax epimorphisms in 2-categories, with special attention to Cat and V -Cat. We show that any 2-category with convenient colimits has an orthogonal LaxEpi-factorization system, and we give a concrete description of this factorization in Cat.

[1]  JIŘÍ ADÁMEK,et al.  Kan injectivity in order-enriched categories , 2015, Math. Struct. Comput. Sci..

[2]  Eduardo J. Dubuc,et al.  Kan Extensions in Enriched Category Theory , 1970 .

[3]  G. M. Kelly Elementary observations on 2-categorical limits , 1989, Bulletin of the Australian Mathematical Society.

[4]  S. Lack A 2-Categories Companion , 2007, math/0702535.

[5]  G. M. Kelly,et al.  Flexible limits for 2-categories , 1989 .

[6]  Fernando Lucatelli Nunes Semantic Factorization and Descent , 2019, 1902.01225.

[7]  G. M. Kelly,et al.  Categories of continuous functors, I , 1972 .

[8]  Walter Tholen,et al.  Factorizations, Localizations, and the Orthogonal Subcategory Problem , 1983 .

[9]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[10]  Ieke Moerdijk,et al.  Local Maps of Toposes , 1989 .

[11]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[14]  E. Vitale,et al.  Proper factorization systems in 2-categories , 2003 .

[15]  A. K. Bousfield,et al.  Constructions of factorization systems in categories , 1977 .

[16]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[17]  J. Adámek,et al.  ON FUNCTORS WHICH ARE LAX EPIMORPHISMS , 2001 .

[18]  Fernando Lucatelli Nunes,et al.  Pseudoalgebras and Non-canonical Isomorphisms , 2017, Applied Categorical Structures.

[19]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[20]  Ross Street,et al.  The comprehensive factorization of a functor , 1973 .