On lax epimorphisms and the associated factorization
暂无分享,去创建一个
[1] JIŘÍ ADÁMEK,et al. Kan injectivity in order-enriched categories , 2015, Math. Struct. Comput. Sci..
[2] Eduardo J. Dubuc,et al. Kan Extensions in Enriched Category Theory , 1970 .
[3] G. M. Kelly. Elementary observations on 2-categorical limits , 1989, Bulletin of the Australian Mathematical Society.
[4] S. Lack. A 2-Categories Companion , 2007, math/0702535.
[5] G. M. Kelly,et al. Flexible limits for 2-categories , 1989 .
[6] Fernando Lucatelli Nunes. Semantic Factorization and Descent , 2019, 1902.01225.
[7] G. M. Kelly,et al. Categories of continuous functors, I , 1972 .
[8] Walter Tholen,et al. Factorizations, Localizations, and the Orthogonal Subcategory Problem , 1983 .
[9] Dominic R. Verity,et al. ∞-Categories for the Working Mathematician , 2018 .
[10] Ieke Moerdijk,et al. Local Maps of Toposes , 1989 .
[11] R. Street,et al. Review of the elements of 2-categories , 1974 .
[12] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[13] Sally Popkorn,et al. A Handbook of Categorical Algebra , 2009 .
[14] E. Vitale,et al. Proper factorization systems in 2-categories , 2003 .
[15] A. K. Bousfield,et al. Constructions of factorization systems in categories , 1977 .
[16] Jirí Adámek,et al. Abstract and Concrete Categories - The Joy of Cats , 1990 .
[17] J. Adámek,et al. ON FUNCTORS WHICH ARE LAX EPIMORPHISMS , 2001 .
[18] Fernando Lucatelli Nunes,et al. Pseudoalgebras and Non-canonical Isomorphisms , 2017, Applied Categorical Structures.
[19] G. M. Kelly,et al. BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.
[20] Ross Street,et al. The comprehensive factorization of a functor , 1973 .