Olfactory Response of Plutella xylostella (Lepidoptera: Yponomeutidae) Adults to Refugia Plant

Selection of refugia plants is an important step when engineering the agroecological system. The refugia plants can be repellent or attractant to insect pests and in many species the role of each plant can be studied using the olfactory responses of the insect to volatile chemical cues emitted by the plant. The objective of this study was to determine the olfactory response of Plutella xylostella (Lepidoptera: Yponomeutidae) adults to several refugia plant candidates. Y-tube olfactometer tests were used to determine responses of P. xylostella to candidate plant species including: Ageratum conyzoides, Galinsoga parviflora, Synedrella nodiflora, Sphagneticola trilobata, Brassica rapa, Rorippa indica, Arachis pintoi, Ocimum basilicum, Apium graveolens, and Portulaca oleracea. Olfactory choice tests were conducted to compare preferences of insect. The results showed that R. indica, G. parviflora, and S. trilobata flowers attracted P. xylostella. R. indica and B. rapa leaves had high attractiveness for P. xylostella adults. At the same time, the A. graveolens, A. conyzoides, and O. basilicum leaves showed potential repellency. The conclusions of this study are R. indica and B. rapa have potential for use as trap crops, while A. graveolens, O. basilicum, and A. conyzoides have potential as repellent plants. Further study is necessary to test the olfactory response of P. xylostella’s natural enemies to these refugia plants.

[1]  M. You,et al.  Alyssum (Lobularia maritima) selectively attracts and enhances the performance of Cotesia vestalis, a parasitoid of Plutella xylostella , 2020, Scientific Reports.

[2]  Y. Trisyono,et al.  Resistance Level of Plutella xylostella L. (Lepidoptera: Plutellidae) on Cypermethrin in the Regency of Kupang , 2018, Jurnal Perlindungan Tanaman Indonesia.

[3]  G. Gurr,et al.  Australian native flowering plants enhance the longevity of three parasitoids of brassica pests , 2018 .

[4]  H. Gautier,et al.  Companion Plants for Aphid Pest Management , 2017, Insects.

[5]  A. M. Castro,et al.  Identification of attractant and repellent plants to coffee berry borer, Hypothenemus hampei , 2017 .

[6]  M. Tamò,et al.  Pesticide resistance in Plutella xylostella (Lepidoptera: Plutellidae) populations from Togo and Benin , 2016 .

[7]  Laksmini Prabaningrum,et al.  Resistensi Plutella Xylostella Terhadap Insektisida Yang Umum Digunakan Oleh Petani Kubis Di Sulawesi Selatan , 2016 .

[8]  B. Schatz,et al.  Prospects for repellent in pest control: current developments and future challenges , 2016, Chemoecology.

[9]  Higher longevity and fecundity of Chrysoperla carnea, a predator of olive pests, on some native flowering Mediterranean plants , 2016, Agronomy for Sustainable Development.

[10]  A. Andreazza,et al.  Toxicology Studies - Cells, Drugs and Environment , 2015 .

[11]  Monika Hilker,et al.  Plant odour plumes as mediators of plant–insect interactions , 2014, Biological reviews of the Cambridge Philosophical Society.

[12]  G. Gurr,et al.  Tri-Trophic Insecticidal Effects of African Plants against Cabbage Pests , 2013, PloS one.

[13]  H. Jactel,et al.  Plant apparency, an overlooked driver of associational resistance to insect herbivory , 2013 .

[14]  O. Balmer,et al.  Selective flowers to enhance biological control of cabbage pests by parasitoids , 2012 .

[15]  M. A. Medeiros,et al.  Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B , 2010 .

[16]  Holly M. Martinson,et al.  Associational Resistance and Associational Susceptibility: Having Right or Wrong Neighbors , 2009 .

[17]  D. Kanjanapothi,et al.  Field evaluation of G10, a celery (Apium graveolens)-based topical repellent, against mosquitoes (Diptera: Culicidae) in Chiang Mai province, northern Thailand , 2009, Parasitology Research.

[18]  J. Dai,et al.  Development of bisexual attractants for diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) based on sex pheromone and host volatiles , 2008 .

[19]  R. Meagher,et al.  Attractiveness of binary blends of floral odorant compounds to moths in Florida, USA , 2008 .

[20]  U. Ravid,et al.  Bioactivity of Ocimum gratissimum L. oil and two of its constituents against five insect pests attacking stored food products , 2008 .

[21]  T. Basedow,et al.  The infestation of Vicia faba L. (Fabaceae) by Aphis fabae (Scop.) (Homoptera: Aphididae) under the influence of Lamiaceae (Ocimum basilicum L. and Satureja hortensis L.) , 2006, Journal of Pest Science.

[22]  S. Schütz,et al.  Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. , 2006, The New phytologist.

[23]  Ž. Popović,et al.  Bioactivities of Essential Oils from Basil and Sage To Sitophilus Oryzae L. , 2006 .

[24]  R. Smallegange,et al.  Associative learning of visual and gustatory cues in the large cabbage white butterfly, Pieris brassicae , 2006 .

[25]  L. Dosdall,et al.  Biological control of the diamondback moth, Plutella xylostella: A review , 2005 .

[26]  I. Prosser,et al.  Response of economically important aphids to components of Hemizygia petiolata essential oil. , 2005, Pest management science.

[27]  T. Shibamoto,et al.  Identification of volatile components in basil Ocimum basilicum L and thyme leaves Thymus vulgaris L and their antioxidant properties , 2005 .

[28]  S. Menken,et al.  Inheritance and plasticity of adult host acceptance in Yponomeuta species: implications for host shifts in specialist herbivores , 2005 .

[29]  J. Renwick,et al.  Chemical ecology of oviposition in phytophagous insects , 1989, Experientia.

[30]  K. Haynes,et al.  Identification of floral compounds fromAbelia grandiflora that stimulate upwind flight in cabbage looper moths , 1991, Journal of Chemical Ecology.

[31]  Shabbir Ahmed,et al.  Efficacy of Different Insecticides Against Plutella xylostella under Field Conditions , 2004 .

[32]  M. J. Pascual-Villalobos,et al.  Chemical variation in an Ocimum basilicum germplasm collection and activity of the essential oils on Callosobruchus maculatus , 2003 .

[33]  C. Löfstedt,et al.  Volatiles from flowers of Platanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae) , 2002 .

[34]  A. Bélanger,et al.  Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) , 2001, Journal of stored products research.

[35]  M. G. Nair,et al.  Mosquitocidal, nematicidal, and antifungal compounds from Apium graveolens L. seeds. , 2001, Journal of agricultural and food chemistry.

[36]  X. Wang,et al.  Seasonal abundance of the parasitoid complex associated with the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in Hangzhou, China , 2000, Bulletin of Entomological Research.

[37]  H. Komatsu,et al.  Repellency of Rosemary Oil and Its Components against the Onion Aphid, Neotoxoptera formosana (TAKAHASHI) (Homoptera, Aphididae) , 1997 .

[38]  D. Wright,et al.  Multitrophic interactions and management of the diamondback moth: a review. , 1996 .

[39]  A. J. Keaster,et al.  Field observations on attractiveness of selected blooming plants to noctuid moths and electroantennogram responses of black cutworm (Lepidoptera: Noctuidae) moths to flower volatiles , 1993 .

[40]  W. Aalbersberg,et al.  Essential oil of fijian ageratum conyzoides L. , 1991 .

[41]  D. Thiéry,et al.  Masking of host plant odour in the olfactory orientation of the Colorado potato beetle , 1986 .

[42]  M. Jacobson,et al.  Phenylacetaldehyde Attracts Moths to Bladder Flower and to Blacklight Traps , 1979 .