Optimal cubature in Besov spaces with dominating mixed smoothness on the unit square

We prove new optimal bounds for the error of numerical integration in bivariate Besov spaces with dominating mixed order r. The results essentially improve on the so far best known upper bound achieved by using cubature formulas taking points from a sparse grid. Motivated by Hinrichs' observation that Hammersley type point sets provide optimal discrepancy estimates in Besov spaces with mixed smoothness on the unit square, we directly study quasi-Monte Carlo integration on such point sets. As the main tool we prove the representation of a bivariate periodic function in a piecewise linear tensor Faber basis. This allows for optimal worst case estimates of the QMC integration error with respect to Besov spaces with dominating mixed smoothness up to order r<2. The results in this paper are the first step towards sharp results for spaces with arbitrarily large mixed order on the d-dimensional unit cube. In fact, in contrast to Fibonacci lattice rules, which are also practicable in this context, the QMC methods used in this paper have a proper counterpart in d dimensions.

[1]  Di RenzoMarco,et al.  Smolyak's algorithm , 2009 .

[2]  Jan Vybíral Function spaces with dominating mixed smoothness , 2006 .

[3]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[4]  Lev Markhasin,et al.  Discrepancy and integration in function spaces with dominating mixed smoothness , 2013, 1307.2114.

[5]  M. Skriganov,et al.  Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .

[6]  Tino Ullrich,et al.  Function Spaces with Dominating Mixed Smoothness Characterization by Differences , 2006 .

[7]  Lev Markhasin DISCREPANCY OF GENERALIZED HAMMERSLEY TYPE POINT SETS IN BESOV SPACES WITH DOMINATING MIXED SMOOTHNESS , 2013 .

[8]  I. Meleshko Approximate evaluation of Cauchy type repeated integrals and their principal values , 1979 .

[9]  Aicke Hinrichs Discrepancy of Hammersley points in Besov spaces of dominating mixed smoothness , 2010 .

[10]  Lev Markhasin,et al.  Quasi-Monte Carlo methods for integration of functions with dominating mixed smoothness in arbitrary dimension , 2012, J. Complex..

[11]  E. Hlawka Zur angenäherten Berechnung mehrfacher Integrale , 1962 .

[12]  Dinh Dng B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness , 2011 .

[13]  V. N. Temlyakov Error estimates of quadrature formulas for classes of functions with bounded mixed derivative , 1989 .

[14]  Edmund Hlawka Über die Diskrepanz mehrdimensionaler Folgen mod. 1 , 1961 .

[15]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[16]  W. Sickel,et al.  The Smolyak Algorithm, Sampling on Sparse Grids and Function Spaces of Dominating Mixed Smoothness , 2007 .

[17]  Hans Triebel Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration , 2012 .

[18]  S. K. Zaremba,et al.  The extreme and L2 discrepancies of some plane sets , 1969 .

[19]  M. Nikolskii,et al.  Approximation of Functions of Several Variables and Embedding Theorems , 1971 .

[20]  W. Sickel,et al.  The Smolyak agorithm, sampling on sparse grids and functions spaces of dominated mixed smoothness , 2007 .

[21]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[22]  H. Triebel Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration , 2010 .

[23]  G. Faber Über stetige Funktionen , 1908 .

[24]  Tino rer. nat. Ullrich Smolyak's Algorithm, Spars Grid Approximation and Periodic Function Spaces with Dominating Mixed Smoothness , 2007 .

[25]  Marcinkiewicz-Zygmund Type Inequalities for Irregular Knots and Mixed Metrics , 2006 .