The stabilized mixed finite element scheme of elasticity problem

In this paper, we consider a new mixed finite element scheme of the elasticity problem in two and three dimensions, and the new scheme can impose Neumann boundary condition directly. A new stabilized method is proposed for this scheme, in which the equal order linear element pair is employed to approximate the stress and displacement, and an abstract operator is used to characterize the lack of the inf-sup condition. The new stabilized method is locking free. Numerical results show the excellent stability and accuracy of the new method.

[1]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[2]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[3]  Claes Johnson,et al.  Some equilibrium finite element methods for two-dimensional elasticity problems , 1978 .

[4]  J. Thomas,et al.  Equilibrium finite elements for the linear elastic problem , 1979 .

[5]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[6]  C. P. Gupta,et al.  A family of higher order mixed finite element methods for plane elasticity , 1984 .

[7]  R. Stenberg On the construction of optimal mixed finite element methods for the linear elasticity problem , 1986 .

[8]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[9]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[10]  L. Franca,et al.  Error analysis of some Galerkin least squares methods for the elasticity equations , 1991 .

[11]  L. D. Marini,et al.  MIXED FINITE ELEMENT METHODS WITH CONTINUOUS STRESSES , 1993 .

[12]  M. Fortin,et al.  Dual hybrid methods for the elasticity and the Stokes problems: a unified approach , 1997 .

[13]  R. Codina,et al.  A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation , 1997 .

[14]  A. Huerta,et al.  Implementation of a stabilized finite element formulation for the incompressible Navier–Stokes equations based on a pressure gradient projection , 2001 .

[15]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[16]  D. Arnold,et al.  NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .

[17]  D. Arnold,et al.  RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .

[18]  Z. Cai,et al.  A mixed nonconforming finite element for linear elasticity , 2005 .

[19]  Son-Young Yi Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions , 2005 .

[20]  G. Gatica Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb{RT}_0$-$\mathbb{P}_1$-$\mathbb{P}_0$ approximations , 2006 .

[21]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[22]  Son-Young Yi A NEW NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY , 2006 .

[23]  Jun Hu,et al.  Lower Order Rectangular Nonconforming Mixed Finite Elements for Plane Elasticity , 2007, SIAM J. Numer. Anal..

[24]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[25]  Douglas N. Arnold,et al.  Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..

[26]  Jan Reininghaus,et al.  The Arnold–Winther mixed FEM in linear elasticity. Part I: Implementation and numerical verification☆ , 2008 .

[27]  M. Fortin,et al.  Reduced symmetry elements in linear elasticity , 2008 .

[28]  Jun-Jue Hu,et al.  LOWER ORDER RECTANGULAR NONCONFORMING MIXED FINITE ELEMENT FOR THE THREE-DIMENSIONAL ELASTICITY PROBLEM , 2009 .

[29]  Gerard Awanou A rotated nonconforming rectangular mixed element for elasticity , 2009 .

[30]  Bernardo Cockburn,et al.  A new elasticity element made for enforcing weak stress symmetry , 2010, Math. Comput..

[31]  R. Codina,et al.  Mixed stabilized finite element methods in nonlinear solid mechanics: Part I: Formulation , 2010 .

[32]  Shaochun Chen,et al.  Conforming Rectangular Mixed Finite Elements for Elasticity , 2011, J. Sci. Comput..

[33]  C. Carstensen,et al.  Computational competition of symmetric mixed FEM in linear elasticity , 2011 .

[34]  Jay Gopalakrishnan,et al.  Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity , 2011, SIAM J. Numer. Anal..

[35]  Jay Gopalakrishnan,et al.  A Second Elasticity Element Using the Matrix Bubble , 2012 .

[36]  D. Arnold,et al.  NONCONFORMING TETRAHEDRAL MIXED FINITE ELEMENTS FOR ELASTICITY , 2012, 1210.6256.

[37]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[38]  Bernardo Cockburn,et al.  Superconvergent HDG methods for linear elasticity with weakly symmetric stresses , 2013 .

[39]  A new family of efficient rectangular conforming mixed finite elements for linear elasticity in the symmetric formulation , 2013 .

[40]  D. Shi,et al.  Superconvergence analysis of a stable conforming rectangular mixed finite elements for the linear elasticity problem , 2014 .

[41]  Jun-Jue Hu,et al.  A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids , 2014, 1407.4190.

[42]  Jun-Jue Hu,et al.  Finite element approximations of symmetric tensors on simplicial grids in Rn: the lower order case , 2014 .

[43]  Shangyou Zhang,et al.  A Simple Conforming Mixed Finite Element for Linear Elasticity on Rectangular Grids in Any Space Dimension , 2013, Journal of Scientific Computing.

[44]  Shaochun Chen,et al.  The simplest conforming anisotropic rectangular and cubic mixed finite elements for elasticity , 2015, Appl. Math. Comput..

[45]  Jun-Jue Hu Finite Element Approximations of Symmetric Tensors on Simplicial Grids in R n : The Higher Order Case , 2015 .

[46]  Bishnu P. Lamichhane,et al.  A new stabilization technique for the nonconforming Crouzeix-Raviart element applied to linear elasticity , 2015, Appl. Math. Lett..

[47]  Jinchao Xu,et al.  Interior penalty mixed finite element methods of any order in any dimension for linear elasticity with strongly symmetric stress tensor , 2015, 1507.01752.

[48]  Jun Hu,et al.  A New Family of Efficient Conforming Mixed Finite Elements on Both Rectangular and Cuboid Meshes for Linear Elasticity in the Symmetric Formulation , 2013, SIAM J. Numer. Anal..

[49]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity on quadrilateral meshes , 2013, Adv. Comput. Math..

[50]  Shangyou Zhang,et al.  The simplest nonconforming mixed finite element method for linear elasticity in the symmetric formulation on n-rectangular grids , 2016, Comput. Math. Appl..

[51]  Jun Hu,et al.  Stabilized Mixed Finite Element Methods for Linear Elasticity on Simplicial Grids in ℝn , 2017, Comput. Methods Appl. Math..