Effect of engine operating conditions on the size of primary particles composing diesel soot agglomerates

[1]  Ümit Özgür Köylü,et al.  Diesel Engine Particulate Emissions: A Comparison of Mobility and Microscopy Size Measurements , 2007 .

[2]  M. Pósfai,et al.  Nanostructure of atmospheric soot particles , 2006 .

[3]  Ümit Özgür Köylü,et al.  Effect of operating conditions on the size, morphology, and concentration of submicrometer particulates emitted from a diesel engine , 2006 .

[4]  D. Su,et al.  Diesel engine exhaust emission: oxidative behavior and microstructure of black smoke soot particulate. , 2006, Environmental science & technology.

[5]  M. Arai,et al.  Primary and Aggregate Size Distributions of PM in Tail Pipe Emissions form Diesel Engines , 2005 .

[6]  Dennis N. Assanis,et al.  Development and application of a comprehensive soot model for 3D CFD reacting flow studies in a diesel engine , 2005 .

[7]  Patrick Berghmans,et al.  Characterisation of Soot Emitted by Domestic Heating, Aircraft and Cars Using Diesel or Biodiesel , 2005 .

[8]  A. Braun,et al.  Electron microscopy investigation of carbonaceous particulate matter generated by combustion of fossil fuels , 2005 .

[9]  Konstantinos Boulouchos,et al.  Influence of diesel engine combustion parameters on primary soot particle diameter. , 2005, Environmental science & technology.

[10]  M. Choi,et al.  Effects of engine operating conditions on morphology, microstructure, and fractal geometry of light-duty diesel engine particulates , 2005 .

[11]  M. Maricq,et al.  The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust , 2004 .

[12]  P. Mcmurry,et al.  Structural Properties of Diesel Exhaust Particles Measured by Transmission Electron Microscopy (TEM): Relationships to Particle Mass and Mobility , 2004 .

[13]  Christopher D. Simpson,et al.  Microstructure and oxidation behaviour of Euro IV diesel engine soot: a comparative study with synthetic model soot substances , 2004 .

[14]  Artur Braun,et al.  Size-range analysis of diesel soot with ultra-small angle X-ray scattering , 2004 .

[15]  Valeri Golovitchev,et al.  A phenomenological model for the prediction of soot formation in diesel spray combustion , 2004 .

[16]  R. V. Vander Wal,et al.  Carbon Nanostructure Examined by Lattice Fringe Analysis of High-Resolution Transmission Electron Microscopy Images , 2004, Applied spectroscopy.

[17]  R. L. Wal,et al.  Soot nanostructure: dependence upon synthesis conditions , 2004 .

[18]  S. Weinbruch,et al.  Transmission electron microscopical and aerosol dynamical characterization of soot aerosols , 2003 .

[19]  R. Crookes,et al.  Prediction and measurement of soot particulate formation in a confined diesel fuel spray-flame at 2.1 MPa , 2003 .

[20]  M. Kostoglou,et al.  Cluster-cluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations. , 2002, Journal of colloid and interface science.

[21]  Michael R. Zachariah,et al.  Energy accumulation in nanoparticle collision and coalescence processes , 2002 .

[22]  T. Charalampopoulos,et al.  Effects of polydispersity of chainlike aggregates on light-scattering properties and data inversion. , 2002, Applied optics.

[23]  Choongsik Bae,et al.  Detailed Characterization of Morphology and Dimensions of Diesel Particulates via Thermophoretic Sampling , 2001 .

[24]  E. A. Belenkov Formation of Graphite Structure in Carbon Crystallites , 2001 .

[25]  P. Buseck,et al.  Soot and sulfate aerosol particles in the remote marine troposphere , 1999 .

[26]  O. Armas,et al.  Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas , 1999 .

[27]  P. Buseck,et al.  Airborne minerals and related aerosol particles: effects on climate and the environment. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Kittelson Engines and nanoparticles: a review , 1998 .

[29]  Heinz Burtscher,et al.  High fractal-like dimension of diesel soot agglomerates , 1998 .

[30]  R. Borghi,et al.  Soot formation modeling for turbulent flames , 1997 .

[31]  Ian M. Kennedy,et al.  Models of soot formation and oxidation , 1997 .

[32]  Kazuhiro Akihama,et al.  Microstructure of diesel soot particles probed by electron microscopy: First observation of inner core and outer shell , 1997 .

[33]  Hayashi,et al.  Interlayer spacings in carbon nanotubes. , 1993, Physical review. B, Condensed matter.

[34]  A. Chubukov,et al.  Kohn-Luttinger effect and the instability of a two-dimensional repulsive Fermi liquid at T=0. , 1993, Physical review. B, Condensed matter.

[35]  Ümit Özgür Köylü,et al.  Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times , 1992 .

[36]  C. Megaridis,et al.  Absorption and scattering of light by polydisperse aggregates. , 1991, Applied optics.

[37]  K. Ohsawa,et al.  Photographic and Three Dimensional Numerical Studies of Diesel Soot Formation Process , 1990 .

[38]  Constantine M. Megaridis,et al.  Morphology of flame-generated soot as determined by thermophoretic sampling , 1987 .

[39]  N. Laurendeau,et al.  Influence of temperature and hydroxyl concentration on incipient soot formation in premixed flames , 1986 .

[40]  J. C. Dent,et al.  Phenomenological diesel combustion model including smoke and NO emission , 1986 .

[41]  R. Farmer,et al.  MODELING SOOT EMISSIONS IN COMBUSTION SYSTEMS , 1981 .

[42]  John H. Johnson,et al.  PHYSICAL AND CHEMICAL CHARACTER OF DIESEL PARTICULATE EMISSIONS -- MEASUREMENT TECHNIQUES AND FUNDAMENTAL CONSIDERATIONS , 1978 .

[43]  P. A. Tesner,et al.  Kinetics of dispersed carbon formation , 1971 .