Natural flavone hispidulin protects mice from Staphylococcus aureus pneumonia by inhibition of α-hemolysin production via targeting AgrAC.

[1]  B. Yip,et al.  Boosting Synergistic Effects of Short Antimicrobial Peptides With Conventional Antibiotics Against Resistant Bacteria , 2021, Frontiers in Microbiology.

[2]  D. Metzger,et al.  IFN-γ Drives TNF-α Hyperproduction and Lethal Lung Inflammation during Antibiotic Treatment of Postinfluenza Staphylococcus aureus Pneumonia , 2021, The Journal of Immunology.

[3]  C. Vay,et al.  Salicylic acid stabilizes Staphylococcus aureus biofilm by impairing the agr quorum-sensing system , 2021, Scientific Reports.

[4]  R. Lood,et al.  Development of a Molecular Imprinting-Based Surface Plasmon Resonance Biosensor for Rapid and Sensitive Detection of Staphylococcus aureus Alpha Hemolysin From Human Serum , 2020, Frontiers in Cellular and Infection Microbiology.

[5]  Kaili Liu,et al.  Hispidulin: A promising flavonoid with diverse anti-cancer properties. , 2020, Life sciences.

[6]  Xuming Deng,et al.  A Natural Dietary Flavone Myricetin as an α-Hemolysin Inhibitor for Controlling Staphylococcus aureus Infection , 2020, Frontiers in Cellular and Infection Microbiology.

[7]  Jintae Lee,et al.  Fatty Acids as Antibiofilm and Antivirulence Agents. , 2020, Trends in microbiology.

[8]  A. Horswill,et al.  Structure-Activity-Relationship Studies of Small Molecule Modulators of the Staphylococcal Accessory Gene Regulator. , 2020, Journal of medicinal chemistry.

[9]  S. Woo,et al.  Hispidulin Enhances TRAIL-Mediated Apoptosis via CaMKKβ/AMPK/USP51 Axis-Mediated Bim Stabilization , 2019, Cancers.

[10]  Jianzhong Shen,et al.  Natural products that target virulence factors in antibiotic resistant Staphylococcus aureus. , 2019, Journal of agricultural and food chemistry.

[11]  H. Fan,et al.  Prevalence of methicillin-resistant Staphylococcus aureus in healthy Chinese population: A system review and meta-analysis , 2019, PloS one.

[12]  J. Xie,et al.  Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. , 2019, Life sciences.

[13]  E. Grywalska,et al.  Staphylococcus aureus and Host Immunity in Recurrent Furunculosis , 2019, Dermatology.

[14]  M. Husmann,et al.  Staphylococcus aureus α-Toxin's Close Contacts Ensure the Kill. , 2019, Trends in microbiology.

[15]  Chungguo Wang,et al.  Inhibition of alpha-hemolysin expression by resveratrol attenuates Staphylococcus aureus virulence. , 2019, Microbial pathogenesis.

[16]  Guang-hong Zhou,et al.  Isorhamnetin, Hispidulin, and Cirsimaritin Identified in Tamarix ramosissima Barks from Southern Xinjiang and Their Antioxidant and Antimicrobial Activities , 2019, Molecules.

[17]  B. Kreiswirth,et al.  The tst gene associated Staphylococcus aureus pathogenicity island facilitates its pathogenesis by promoting the secretion of inflammatory cytokines and inducing immune suppression. , 2019, Microbial pathogenesis.

[18]  C. Raorane,et al.  Herring Oil and Omega Fatty Acids Inhibit Staphylococcus aureus Biofilm Formation and Virulence , 2018, Front. Microbiol..

[19]  M. Simões,et al.  Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases , 2018, Toxins.

[20]  Y. Zou,et al.  Eriodictyol protects against Staphylococcus aureus-induced lung cell injury by inhibiting alpha-hemolysin expression , 2018, World Journal of Microbiology and Biotechnology.

[21]  A. Horswill,et al.  Coagulase-Negative Staphylococcal Strain Prevents Staphylococcus aureus Colonization and Skin Infection by Blocking Quorum Sensing. , 2017, Cell host & microbe.

[22]  X. Rao,et al.  Apoptosis induced by Staphylococcus aureus toxins. , 2017, Microbiological research.

[23]  Qingbo Cui,et al.  Geniposide attenuates Staphylococcus aureus-induced pneumonia in mice by inhibiting NF-κB activation. , 2017, Microbial pathogenesis.

[24]  Dhekra Mhalla,et al.  Antibacterial Activity of Onopordum Espinae: Identification of Hispidulin and Dehydromelitensin-8-(4ꞌ-Hydroxy-Methacrylate) , 2017, Iranian journal of pharmaceutical research : IJPR.

[25]  H. Ingmer,et al.  Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus , 2016, PloS one.

[26]  A. Macêdo,et al.  Plant Natural Products Targeting Bacterial Virulence Factors. , 2016, Chemical reviews.

[27]  Xuming Deng,et al.  Curcumin protects mice from Staphylococcus aureus pneumonia by interfering with the self-assembly process of α-hemolysin , 2016, Scientific Reports.

[28]  W. Self,et al.  Staphylococcus aureus Community-acquired Pneumonia: Prevalence, Clinical Characteristics, and Outcomes , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[29]  R. Rappuoli,et al.  Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin , 2016, Clinical and Vaccine Immunology.

[30]  Jintae Lee,et al.  Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus , 2016, Scientific Reports.

[31]  O. Boyman,et al.  Interleukin-2: Biology, Design and Application. , 2015, Trends in immunology.

[32]  J. O’Gara,et al.  Methicillin resistance and the biofilm phenotype in Staphylococcus aureus , 2015, Front. Cell. Infect. Microbiol..

[33]  V. Gekas,et al.  HPLC-SPE-NMR characterization of major metabolites in Salvia fruticosa Mill. extract with antifungal potential: relevance of carnosic acid, carnosol, and hispidulin. , 2015, Journal of agricultural and food chemistry.

[34]  A. Horswill,et al.  Staphylococcus aureus biofilms: recent developments in biofilm dispersal , 2014, Front. Cell. Infect. Microbiol..

[35]  Bruce S. Edwards,et al.  Selective Chemical Inhibition of agr Quorum Sensing in Staphylococcus aureus Promotes Host Defense with Minimal Impact on Resistance , 2014, PLoS pathogens.

[36]  V. Soumelis,et al.  Epithelial control of the human pDC response to extracellular bacteria , 2013, European journal of immunology.

[37]  D. Sidote,et al.  Identification of a hydrophobic cleft in the LytTR domain of AgrA as a locus for small molecule interactions that inhibit DNA binding. , 2012, Biochemistry.

[38]  J. Voyich,et al.  The SaeR/S Gene Regulatory System Induces a Pro-Inflammatory Cytokine Response during Staphylococcus aureus Infection , 2011, PloS one.

[39]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[40]  Francis J. Martin,et al.  Staphylococcus aureus activates type I IFN signaling in mice and humans through the Xr repeated sequences of protein A. , 2009, The Journal of clinical investigation.

[41]  H. Gresham,et al.  Apolipoprotein B Is an innate barrier against invasive Staphylococcus aureus infection. , 2008, Cell host & microbe.

[42]  E. Greenberg,et al.  Quorum Sensing in Staphylococcus aureus Biofilms , 2004, Journal of bacteriology.

[43]  Paul M. Orwin,et al.  Exotoxins of Staphylococcus aureus , 2000, Clinical Microbiology Reviews.

[44]  A Radbruch,et al.  Sequential production of IL‐2, IFN‐γ and IL‐10 by individual staphylococcal enterotoxin B‐activated T helper lymphocytes , 1998, European journal of immunology.

[45]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.